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Abstract

Recently, the task of distantly supervised (DS)
ultra-fine entity typing has received significant
attention. However, DS data is noisy and often
suffers from missing or wrong labeling issues
resulting in low precision and low recall. This
paper proposes a novel ultra-fine entity typ-
ing model with denoising capability. Specif-
ically, we build a noise model to estimate the
unknown labeling noise distribution over input
contexts and noisy type labels. With the noise
model, more trustworthy labels can be recov-
ered by subtracting the estimated noise from
the input. Furthermore, we propose an entity
typing model, which adopts a bi-encoder archi-
tecture, is trained on the denoised data. Finally,
the noise model and entity typing model are
trained iteratively to enhance each other. We
conduct extensive experiments on the Ultra-
Fine entity typing dataset as well as OntoNotes
dataset and demonstrate that our approach sig-
nificantly outperforms other baseline methods.

1 Introduction

Entity typing is the task of identifying specific se-
mantic types of entity mentions in given contexts.
Recently, more and more research has focused on
ultra-fine entity typing (Choi et al., 2018; Onoe
and Durrett, 2019; Dai et al., 2021). Comparing to
traditional entity typing tasks (Ren et al., 2016a,b;
Xu and Barbosa, 2018; Ling and Weld, 2012; Yosef
et al., 2013; Abhishek et al., 2017; Shimaoka et al.,
2017; Xin et al., 2018; Dai et al., 2019; Zhang
et al., 2022), the type set in ultra-fine entity typing
is not restricted by KB schema, but includes a vast
number of free-form types.

To automatically annotate the large-scale ultra-
fine entity typing data, Choi et al. (2018) utilized
different sources for distant supervision (DS), in-
cluding: 1) entity linking, where they mine entity
mentions that were linked to Wikipedia in HTML,
and extract relevant types from their encyclopedic

definitions, and 2) head words, where they auto-
matically extracted nominal head words from raw
text as types. However, distant supervision often
suffers from the low-precision and low-recall prob-
lems (Ren et al., 2016b), where recall can suffer
from KB or Wikipedia incompleteness, and preci-
sion can suffer when the selected types do not fit
the context.

Instance DS label

S1: On her first match on
grass at the AEGON Interna-
tional in Eastbourne, Lisicki lost
to [Samantha Stosur] in the first
round.

actor, ath-
lete, person

S2: [The film] was adapted
by Hugh Walpole, Howard Es-
tabrook and Lenore J. Coffee
from the Dickens novel, and di-
rected by George Cukor.

film,
movie,
show,
art, enter-
tainment,
creation

Table 1: Examples selected from the Ultra-Fine Entity
Typing dataset in Choi et al. (2018). Labels in red
font indicate wrong labels, while labels in grey indicate
missed labels.

Table 1 shows two examples from these
datasets (Choi et al., 2018) to illustrate the chal-
lenges in automatic annotation using distant super-
vision. Sentence S1 is incorrectly annotated as
actor through entity linking, which is beyond the
given context. Sentence S2 shows that simply treat-
ing the head word film as the type label, while
correct in this case, but misses many other valid
types: movie, show, art, etc.

To address the noisy labeling problem in dis-
tantly supervised entity typing, researchers devoted
much effort to denoising. Xiong et al. (2019) learns
the hierarchical correlations between different



types by injecting type co-occurrence Graph. Onoe
et al. (2021) considers box embedding, which is
more robust to data noise. While these methods im-
plicitly learn to denoise data noise, it is difficult for
humans to interpret their denoising capacity. Onoe
and Durrett (2019) proposed an explicit denois-
ing method, where they learn a filtering function
and a relabeling function to denoise DS data and
then train an entity typing model on the denoised
DS dataset. However, they only utilized a small
scale gold data to learn the filtering and relabeling
function. Besides, their model did not model the
dependency between context and entity phrases.

In this paper, we aim to develop an explicit de-
noising method for distantly supervised ultra-fine
entity typing. Our framework mainly consists of
two modules: a noise modeling component and an
entity typing model. The noise model estimates the
unknown labeling noise distribution over input con-
texts and observed (noisy) type labels. However,
noise modeling is challenging because the noise
information in the DS data is often unavailable,
and noise can vary with different distant labeling
techniques. To model the noise, we perturb the
small-scale gold-labeled dataset’s labels to mimic
the DS’s noise. Additionally, we utilize the L1

norm regularization on the large-scale DS data to
pursue the sparseness of labeling noise. Our noise
model conditions on the input context sentence and
its noisy labels to measure the underlying noise,
where the denoised data can be recovered from DS
data by subtracting the noise. For the entity typing
model, we adopt a bi-encoder architecture to match
input context and type phrases and train the entity
typing model on gold labeled and denoised data.
Finally, we design an iterative training (Tanaka
et al., 2018; Xie et al., 2020) procedure to train the
noise model and entity typing model iteratively to
enhance each other.

We summarize our contributions as follows:

(i) We propose a denoising enhanced ultra-fine en-
tity typing model under the distant supervised set-
ting, including noise modeling and entity typing
modeling. Unlike previous denoising work (Onoe
and Durrett, 2019) to filter low-quality samples, our
noise model directly measures underlying labeling
noise, regardless of DS techniques.

(ii) Onoe and Durrett (2019) learns a relabel func-
tion to directly relabel samples, while, we model
the labeling noise. iii) We evaluate our model

on both the Ultra-Fine entity typing (UFET) and
OntoNotes datasets, which are benchmarks for dis-
tantly supervised ultra-fine entity typing and fine-
grained entity typing tasks. We show that our
model can effectively denoise the DS data and
learn a superior entity typing model through de-
tailed comparison, analysis, and case study.

2 Related Works

2.1 Ultra-Fine Entity Typing

Entity typing is one of the information extraction
tasks (Sun et al., 2018; Liu et al., 2020b,a; Zhang
et al., 2021). The ultra-fine entity typing task was
first proposed by Choi et al. (2018). They consid-
ered a multitask objective, where they divide labels
into three bins (general, fine, and ultra-fine), and
update labels only in a bin containing at least one
positive label. To further reduce the distant super-
vision noise, Xiong et al. (2019) introduces a graph
propagation layer to impose a label-relational bias
on entity typing models to implicitly capture type
dependencies. Onoe et al. (2021) uses box em-
bedding to capture latent type hierarchies, which is
more robust to the labeling noise comparing to vec-
tor embedding. Dai et al. (2021) proposes to obtain
more weakly supervised training data by prompting
weak labels from language models. Zhang et al.
(2022) leverages retrieval augmentation to resolve
the distant supervision noise.

Among the previous works, Onoe and Durrett
(2019) is the most similar one to ours, where the fil-
tering function is used to discard useless instances,
and relabeling function is used to relabel an in-
stance. Through filtering and relabeling, Onoe and
Durrett (2019) explicitly denoise the distant super-
vision data. However, their denoising procedure
is trained only on a small-scale gold-labeled data,
while ignoring the large-scale data with distant su-
pervision labels. In addition, our denoising method
directly models the underlying label noise instead
of brutally filtering all the samples with partial
wrong labels.

2.2 Learning from Noisy Labeled Datasets

We briefly review the broad techniques for learning
from noisy labeled datasets. Traditionally, regu-
larization is an efficient method to deal with the
issue of DNNs easily fitting noisy labels, includ-
ing weight decay, dropout and multi-view consis-
tency penalty (Fei and Li, 2020). Besides, a few
studies achieve noise-robust classification using
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Figure 1: The procedure of training our noise model using one example. We use an instance from gold dataset
“But Laporte, who names his World Cup squad on Wednesday, feels [he] has now found a World Cup fly...” as
example, where we perturb the gold type set τG into low-recall set τRG and low-precision set τPG , separately. The
noise model Nθ takes the perturbed data as input, and outputs the estimated noise.

noise-tolerant loss functions, such as mean square
error and mean absolute error (Ghosh et al., 2017).
Recently, self-training (Xie et al., 2020) first uses
labeled data to train a good teacher model, then
uses the teacher model to label unlabeled data, and
finally uses the labeled data and unlabeled data to
jointly train a student model. Furthermore, various
noise modeling methods are developed, including
normalizing flows based methods (Abdelhamed
et al., 2019), and GAN based methods (Chen et al.,
2018). However, these noise modeling methods
cannot be directly adapted to NLP tasks because of
the differentiability issues.

3 Methodology

3.1 Problem Setup

Given l gold labeled triplets (context, mention, la-
bel) DG = {(x(i)G ,m

(i)
G ,Y

(i)
G )}li=1 and n noisily la-

beled triplets DN = {(x(i)N ,m
(i)
N ,Y

(i)
N )}ni=1, where

both Y
(i)
G and Y

(i)
N ∈ {0, 1}T , and T is the total

number of different types, our task aims to build a
multi-label classification model to predict correct
entity types for input contexts and mentions. For
simplicity of notation, we define the complete en-
tity type set as T = {ti}Ti=1, where each ti is a type
represented as a phrase, e.g., “basketball player”.
Therefore, each label vector Y(i)

G has a correspond-
ing type set τG = {tj |Y (i,j)

G = 1, j = 1, · · · , T},
similarly for Y(i)

N with τN.

3.2 Model Architecture

Our distantly supervised approach consists of two
major components: a denoising module and an en-
tity typing module. The denoising module models
label noise based on the perturbed gold labeled data
and existing noisy labeled data from distant super-

vision. In particular, we characterize two kinds
of entity typing noise: i) low coverage (low re-
call), and ii) wrong labeling (low precision). Using
a unified noise modeling mechanism, we build a
connection between ground truth labels, observed
labels, and noise. With reliable noise modeling, we
can recover high-quality labels for noisy data and
further train a more accurate entity typing model.
Below we provide details of each component.

3.3 Noise Modeling

Given a certain context and mention pair (x,m),
we assume the relation among gold label yG and
observed (noisy) label yN is given by:

yG = [min(yN − e, 1)]+ (1)

where [x]+ = max(x, 0), e ∈ {−1, 0, 1}T is the
noise term, including causes to both false positive
and false negative errors. For gold labeled data DG,
yG = Y

(i)
G and e = 0. For noisily labeled data

DN, yG and e are unknown. Our denoising aims
at recovering a more trustworthy label yG from its
noisy observation yN by subtracting e.

Figure 1 illustrates the workflow of our denois-
ing model. The noise model Nθ(x,m, τ) is a
neural network model parameterized by θ, which
takes the query sentence x with the target entity
mention m as well as the current assigned (noisy)
type set τ as input, and outputs the noise measure
e = Nθ(x,m, τ). By Eq (1), it is relatively easy
to conclude that ei → 0 indicates no change in the
corresponding type assignment for type ti. Simi-
larly, ei → 1 indicates changing the type assign-
ment towards negative, and when ei → −1 means
changing the type assignment towards positive.

We use BERT (Devlin et al., 2019) model to
build Nθ(.). Specifically, BERT jointly encodes



input context, target mention as well as current
assigned entity type set to d dimensional vector
for each token and we extract the vector corre-
sponding to the first token [CLS] as a pooled
representation of the input as Embed(x,m, τ) =
BERTCLS(Joint(x,m, τ)).

To joint the context x, mention m and current as-
signed entity types τ in an entity-aware manner, we
first utilize the special tokens preserved in BERT
to indicate the positions of the target entity men-
tion in x. Specifically, we insert [E0]/[/E0] at the
beginning/ending of the target mention m. Follow-
ing the BERT convention, we add special tokens
[CLS] and [SEP] into the spans of context text and
the entity type text spans. To encode the assigned
type set τ , we concatenate the type’s plain text after
query x. Since there is no sequence order between
types, for type phrases, the position ids of all the
tokens in type phrase spans are set to be the length
of encoded x. Hence Joint(x,m, τ) is defined as:

Joint(x,m, τ) =[CLS]w1, ..., [E0]wp, ..., wq[/E0],

..., wn[SEP]ti, ..., tj[SEP],

wherewp, · · · , wq represents the tokens of mention
m, and ti, · · · , tj are concatenated type phrases.

The estimated noise e is calculated by appending
a linear layer with tanh activation on Embed(.):

e = tanh (W ∗ Embed(x,m, τ) + b), (2)

where W ∈ Rd×T and b ∈ RT are trainable
parameters.

3.3.1 Training Data for Noise Modeling
We utilize the both available small-scale gold data
and large-scale distant supervision data to train our
noise model. Below we use ultra-fine dataset (Choi
et al., 2018) as the example. Other datasets can be
processed similarly.

Utilize Gold Labeled Data DG. We perturb the
labels of DG to mimic the low-recall and low-
precision issues under distant supervision. First
we analyze the average number of types in DG and
DN, respectively. In ultra-fine dataset (Choi et al.,
2018), there are 5.4 and 1.5 types per gold example
and DS example, respectively.

To mimic the low-recall issue, for each instance
(xG,mG, τG) from DG, we randomly drop each
type with a fixed rate 0.7 independent of other types
to produce a corrupted type set τRG . We denote the
corrupted gold data with randomly dropped types

as DR
G. Meanwhile, to mimic the low-precision

issue, for each instance (xG,mG, τG), we also ran-
domly replace its gold entity type set τG to a ran-
dom set τPG , where τPG is randomly sampled from
DN. Note that τG and τPG may or may not have
overlapping entity types. The non-overlapping
replacement leads to a totally corrupted DS in-
stance. The overlapping replacement represents
the partially correct labeled instance. We denote
the corrupted gold data with randomly replaced
labels as DP

G. Given the complete entity set T ,
τG and τP ∈ {τPG , τRG }, it is straightforward to
construct multi-hot vector representations yG (i.e.,
yG = Y

(i)
G ) and yP ∈ {0, 1}T . Finally, we collect

the combined perturbation dataset DP = DP
G ∪ DR

G.

Utilize Distant Supervision Data DN. Although
the perturbed dataset DP could be large, the
gold labeled dataset DG per se is still small,
which means the number of different query sen-
tences in DP is limited. Hence training the noise
model Nθ(.) only on DP may be insufficient for
satisfactory performance.

Although distant supervision datasets are noisy
and the noise is unknown, they still can provide
weak supervision. Hence we use the available
large-scale DS dataset DN to better train Nθ(.).
Our motivation grounds on the study in Choi et al.
(2018) showing that removing any source of dis-
tant supervision data from the whole training set
results in a significant performance drop of the en-
tity typing model. In other words, DS data contains
a significant amount of correctly assigned entity
types. Inspired by the analysis in Choi et al. (2018),
we argue that the estimated noise e on DS data
should be sparse. The sparsity enables us to design
a suitable loss function to use DN in trainingNθ(.).

3.3.2 Objective Function for Noise Modeling

Training the noise model Nθ(.) on DP is a super-
vised learning procedure, and we apply the binary
cross-entropy loss on each entity type. We con-
sider below loss function for one corrupted input
((x,m,yP, τP),yG) from DP:

JDP = −
T∑
t=1

[y
(t)
G · log ŷt+ (3)

(1− y
(t)
G ) · log(1− ŷt)]

ŷt = [(min(y(t)
P −N

(t)
θ (x,m, τP), 1)]+ (4)

To utilizeDN on trainingNθ(.), we use L1 norm



regularization on the difference between predicted
labels and observed (noisy) labels. L1 norm en-
forces sparseness, which leads to zero noise on
a certain entity types. Such a procedure makes
our prediction partially consistent with observed
noisy labels, which is reasonable since DN con-
tains a significant amount of correct labels (Choi
et al., 2018). The loss function on one instance
((x,m, τN),Y

(i)
N ) from DN is as follows:

JDN = ||ŷ −Y
(i)
N ||1, (5)

where ŷ = [(min(Y(i)
N −Nθ(x,m, τN), 1)]+. The

overall objective function becomes:

Jdenoising = JDP + α ∗ JDN (6)

where α ≥ 0 is the regularization parameter, which
is set as a small value so that distant supervision
data can provide weak supervision but without over-
whelming the training procedure.

3.4 Entity Typing Model
After training the noise model, we apply the learned
model Nθ(.) on DS data DN to get the denoised
dataset DD. We then use both DG and DD to train
our entity typing modelMφ(.) parameterized by
φ. Our entity typing model adopts the two-tower
architecture, including the context tower and type
candidate tower, as shown in Figure 2.

BERT 
Encoder

BERT 
Encoder

Context Sentence Input Type Phrase Input

Query Embedding Type Embedding

Context Tower Type candidate Tower

Figure 2: The architecture of entity typing model.

In particular, the context tower takes the context
sentence as input. We encode the sentence in an
entity-aware manner using BERT model:

Jointcontext(x) = [CLS]w1, ..., [E0]wp, ..., wq[/E0]...

Embedcontext(x) = BERTCLS(Jointcontext(x))

The candidate tower takes one entity type phrase
as input. Again, we use another BERT model to

encode the type phrase:

Jointcandidate(t) = [CLS]w1, ..., wn[SEP]

Embedcandidate(t) = BERTCLS(Jointcandidate(t))

where w1, ..., wn represents tokens of one type t.
The final matching score s(x, t) is computed as

the inner product of the query embedding and the
type embedding followed by a sigmoid activation:

s(x, t) = σ(Embedcontext(x)
TEmbedcandidate(t))

where σ(.) is the sigmoid function, which maps the
value into 0 to 1. In our entity typing modelMφ,
we independently compute the matching score for
each candidate type t.

Objective function. Previous works Choi et al.
(2018); Xiong et al. (2019); Onoe and Durrett
(2019); Onoe et al. (2021); Dai et al. (2021) all
adopt multi-task learning to handle the labeling
noise, where they partition the labels into gen-
eral, fine, and ultra-fine classes, and only treat an
instance as an example for types of the class in
question if it contains a label for that class. The
multi-task objective avoids penalizing false nega-
tive types and can achieve higher recalls. In our
work, since we already denoise and re-label the
distant supervision data using our learned model
Nθ(.), we directly train the entity typing model us-
ing cross entropy loss without multi-task learning:

Jtyping = −
T∑
t=1

[yt · log ŷt + (1− yt) · log(1− ŷt)]

ŷt =Mφ(x, t) (7)

3.5 Iterative Training
In our framework, the noise model Nθ(.) and the
entity typing model Mφ are iterative trained as
shown in Figure 3. We describe one training itera-
tion for Nθ(.) andMφ in the following:

Denoising 
Model

Entity Typing 
Model

Re-labeled distant data

Predicted distant supervision data

Figure 3: Illustration of the iterative training.



UpdatingNθ(.): We train the noise modelNθ(.)
by Eq (6) using the perturbed gold labeled dataset
DP and noisy datasetD′. At the first iteration,D′ is
from the original distant supervision,D′ = DN. Af-
ter the first iteration, labels in D′ are re-calculated
by applying current entity typing model Mφ(.).
Also, after each iteration, we increase the value of
the weight α in Eq (6). After noise modeling, we
get the denoised dataset DD by removing the noise
calculated from applying Nθ(.) on D′.

Updating Mφ(.): We train the entity typing
model Mφ(.) by Eq (7) using gold dataset DG
and the latest denoised dataset DD. After training
currentMφ(.), we re-calculate the labels of distant
supervision data, and get the updated DS datasetD′.
We pass D′ to the next noise modeling iteration.

4 Experiments

4.1 Experimental Setup
Datasets Our experiments mainly focus on the
Ultra-Fine entity typing (UFET) dataset, which
has 10,331 labels. The distant supervision training
set is annotated with heterogeneous supervisions
based on KB, Wikipedia, and headwords, result-
ing in about 25.2M training samples. This dataset
also includes around 6,000 crowdsourced samples
equally split into training, validation, and test set.

In addition, we investigate on OntoNotes dataset,
which is a widely used benchmark for fine-grained
entity typing systems. The initial training, develop-
ment, and test splits contain 250K, 2K, and 9K ex-
amples, respectively. Choi et al. (2018) augmented
the training set to include 3.4M distant supervision
examples. To train our noise model, we further
augment the training data using the 2,000 training
crowdsourced samples from the UFET dataset. We
map the labels from ultra-fine types to OntoNotes
types. Most OntoNote’s types can directly cor-
respond to UFET’s types (e.g., “doctor” to “/per-
son/doctor”). We then expand these labels accord-
ing to the ontology to include their hypernyms (e.g.,
“/person/doctor” will also generate “person”).

Baselines. For the UFET dataset, we compare with

1) AttentiveNER (Shimaoka et al., 2016);
2) Multi-task model (Choi et al., 2018), which is
proposed together with the UFET data;
3) LabelGCN (Xiong et al., 2019);
4) BERT (Onoe and Durrett, 2019), which was first
introduced as a baseline;

5) Filter+Relabel (Onoe and Durrett, 2019);
6) Vector Embedding (Onoe et al., 2021);
7) Box Embedding (Onoe et al., 2021);
8) MLMET (Dai et al., 2021).

For experiments on OntoNotes, additionally, we
compare with AFET (Ren et al., 2016a), LNR (Ren
et al., 2016b), and NFETC (Xu and Barbosa, 2018).

Evaluation Metrics. For the UFET dataset, we
report the mean reciprocal rank (MRR), macro
precision(P), recall (R), and F1. As P, R and F1

all depend on a chosen threshold on probabilities,
we tune the threshold on the validation set from
50 equal-interval thresholds between 0 and 1 and
choose the optimal threshold which can lead to
the best F1 score. Then, we use the found opti-
mal threshold for the test set. Also, we plot the
precision-recall curves, which are the more trans-
parent comparison. For the OntoNotes dataset, we
report the standard metrics used by baseline mod-
els: accuracy, macro, and micro F1 scores.

Implementation Details. To train models on
UFET dataset, all the baselines adopt the multi-
task loss proposed in Choi et al. (2018). For our
model, we use the standard binary cross-entropy
(BCE) losses in Eq (6, 7). We carefully tune
α from [0.05, 0.1, 0.25, 0.5, 0.75, 1] and set it to
0.25 based on validation set. We use “BERT-
base-uncased” to initialize Bert encoder weights,
and set dropout rate to 0.1. We use Adam opti-
mizer (Kingma and Ba, 2015) with learning rate
3e− 5. We repeat our experiments five times and
report the average metrics on the test set.

MLMET results are reproduced using the pub-
lic released code and data, not directly taken from
their paper. For all our ultra-fine entity typing ex-
periments, we consider 25.2M distant supervision
training samples and 6,000 crowdsourced samples
equally split into training, validation, and test set.
While, the original MLMET also consider addi-
tional 3.7M pronoun mentions dataset from EN
Gigaword.

4.2 Evaluation Results

Evaluation on UFET Dataset. We report the com-
parison results on UFET in Table 2. MRR score is
independent with threshold choices. For F1 score,
we apply threshold-tuning, which further improves
the F1 score on both the development and test sets.
In terms of MRR and F1, our model outperforms
baseline methods by a large margin, especially on



Model
Dev Test

MRR P R F1 MRR P R F1

AttentiveNER 22.1 53.7 15.0 23.5 22.3 54.2 15.2 23.7
Multi-task 22.9 48.1 23.2 31.3 23.4 47.1 24.2 32.0

LabelGCN 25.0 55.6 25.4 35.0 25.3 54.8 25.9 35.1
BERT - 51.6 32.8 40.1 - 51.6 33.0 40.2

Filter+Relabel - 50.7 33.1 40.1 - 51.5 33.0 40.2
VectorEmb - 53.3 36.7 43.5 - 53.0 36.3 43.1
BoxEmb - 52.9 39.1 45.0 - 52.8 38.8 44.8
MLMET∗ 29.0 53.6 39.4 45.4 29.2 53.4 40.5 46.1

Ours 30.3 52.8 41.7 46.6 30.9 53.4 41.9 47.0
Ours+ thresholding 30.3 50.8 43.7 47.0 30.9 51.2 43.7 47.3

Table 2: Comparison with baseline models on the UFET dataset. All the baseline results are from their papers. “-”
means no report. Best results with statistical significance are marked in bold (one-sample t-test with p < 0.05).
“*” means we reproduced the results based on the public released code and dataset.

the test set. We can see that recall is usually lag-
ging behind precision by a large margin for most
baseline models. It is because that these baselines
easily correctly predict the nine general types but
have difficulty predicting the large number of fine-
grained and ultra-fine types correctly. On the other
hand, our model can balance the precision and re-
call scores well even without threshold-tuning. The
“thresholding” sacrifices the precision and tunes
towards recall to lead to a higher F1 score.
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Figure 4: Precision-recall curves on UFET dev set.

For a more transparent comparison, we show
the precision-recall curves in Figure 4. These data
points are based on the performance on the devel-
opment set given by 50 equal-interval thresholds
between 0 and 1. We can see there is a clear mar-
gin between our model v.s. LabelGCN and the
multi-task model (Choi et al., 2018). With higher
recalls or more retrieved types, achieving high pre-
cision requires being accurate on fine-grained and

Model Acc Mac-F1 Mic-F1

AttentiveNER 51.7 71.0 64.9
AFET 55.1 71.1 64.7
LNR 57.2 71.5 66.1

NFETC 60.2 76.4 70.2

Multi-task 59.5 76.8 71.8
LabelGCN 59.6 77.8 72.2

BERT 51.8 76.6 69.1
Filter+Relabel 64.9 84.5 79.2

MLMET 67.4 85.4 80.4

Ours 70.0 85.4 80.9

Table 3: Comparison results on OntoNotes. Best re-
sults with statistical significance are marked in bold.

ultra-fine types, which are often harder to predict.

Evaluation on OntoNotes Dataset. We report the
comparison results on OntoNotes in Table 3. Base-
line models including AttentiveNER, AFET, LNR,
and NFETC explicitly use the hierarchical type
structures provided by the OntoNotes ontology.
While other baselines and ours do not consider the
type hierarchy and treat each type as a free-form
phrase. From Table 3, we can see that our model
significantly outperforms other baselines on all the
metrics, especially on the accuracy metric.

4.3 Analysis and Ablation Study
4.3.1 Utility of Iterative Training
First, we analyze the effectiveness of iterative train-
ing. We report the test results of our model and



Filter+Relabel model under different iteration steps.
In the original Filter+Relabel model, the filter and
relabel functions are trained on the gold data only.
To make the Filter+Relabel model take advantage
of the iterative training, we relabel all the DS data
by the trained entity typing model after each itera-
tion. Then we leverage the current filtering function
to evaluate the relabeled DS samples and filter out
the high-quality DS samples. Then we joint the
high-quality DS samples with gold data to train
filter and relabel functions in the next iteration.

Iteration Model P R F1

1
Ours 46.6 46.4 46.5

Filter+Relabel 50.7 33.1 40.1

2
Ours 48.0 46.1 47.0

Filter+Relabel 52.3 35.0 41.9

3
Ours 51.2 43.7 47.3

Filter+Relabel 52.9 35.1 42.2

Table 4: Test results of our model and Filter+Relabel
on UFET under different iteration training steps.

Table 4 shows that with the step of iteration in-
creasing, the overall performance of both models
get better. This proves the significance of iterative
training. With the iteration step increasing, the DS
data becomes less noisy. Also, we can see at every
iteration step, our model is much better than Fil-
ter+Relabel, which proves that modeling the noise
instead of the label is a better choice.

4.3.2 Effectiveness of Noise Modeling

Since noise modeling’s output directly impacts the
final entity typing performance, we also quantify
the performance of trained Nθ(.) on held-out gold-
labeled dev set and perturbed gold dev set to mimic
the low-recall and low-precision scenarios.

Data Filter+Relabel Ours

Gold Dev 87.9 94.2
Low-recall set 54.5 55.8

Low-precision set 33.0 35.5

Table 5: F1 scores of noise modeling on three datasets.

We report the F1 score on these three datasets in
Table 5. To fairly compare with Filter+Relabel, we
re-implement it using BERT as the backbone. Our

denoising module generates more accurate predic-
tion and is more robust to noise.

4.3.3 Consistency Analysis

We investigate whether our model can predict type
relations in a consistent manner. Following the
evaluation in Onoe et al. (2021), we conduct the
analysis on the UFET dev set. We count the num-
ber of occurrences for all subtypes in 30 (supertype,
subtype) pairs listed in Onoe et al. (2021). Then,
for each subtype, we count how many times its cor-
responding supertype is also predicted. Finally, the
accuracy (acc) is the ratio of predicting the corre-
sponding supertype when the subtype is exhibited.

Model # (sup, sub) # sub acc

VectorEmb 1451 1631 89.0
BoxEmb 1851 1997 92.7

Ours 2514 2674 94.0

Table 6: Consistency: accuracy evaluated on the 30 (su-
pertype, subtypes) pairs.

Table 6 reports the count and accuracy of the 30
(supertype, subtype) pairs, where the #(sup, sub)
column shows the number of pairs found in the pre-
dictions, # sub column shows the number of sub-
types found in the predictions. Our model achieves
a higher count and accuracy. Intuitively, a higher
count indicates a higher recall of the model. A
higher accuracy proves that although the supertype-
subtype relations are not strictly defined in the train-
ing data, our model still captures the correlations.

4.3.4 Ablation Study

Model MRR P R F1

Full model 30.3 50.7 43.5 46.8
w/o denoise 27.2 43.7 39.2 41.3

w/o DN 28.3 45.3 39.7 42.3
w/o cross-attn. 29.9 47.1 43.9 45.4

Table 7: Ablation study on the UFET test set.

To prove the effectiveness of our denoising
mechanism for the entity typing task, we conduct
an ablation study on the UFET dev set and show the
results in Table 7. We study three model variants,
including i) full model w/o denoising, where we
train entity typing model on gold data and DS data;
ii) full model w/o denoising or DS data, where we



train entity typing model only on gold data; and
iii) full model w/o cross-attention between the in-
put context and assigned entity type phrases when
modeling noise.

From Table 7, we first observe that directly train-
ing an entity typing model without our denoising
mechanism results in a significant performance
drop. Second, we see that introducing more dis-
tant supervision data DN can improve the over-
all entity typing performance. Finally, joining the
context and assigned types and introducing self-
attention (Vaswani et al., 2017) further improves
F1 score by 1.6%. Therefore, when designing the
denoising model, it is necessary to fully explore the
dependency between the context sentence and the
assigned type set instead of a simple sum-pooling
in Filter+Relabel (Onoe and Durrett, 2019).

4.4 Case Study
To better explore the effectiveness of our denois-
ing model, we show two case studies from the DS
development set. We show all types with at least
one score over the threshold of 0.5, or is annotated
true by distant supervision in Table 8 and Table 9.
The target entity mentions are underlined within
brackets.

Case Study S1: For the context “My grandfather
joined an [artillery regiment] with the Canadian
Expeditionary Force and then set off to fight...”, as
shown in Table 8, DS label misses the type “group”,
our denoising mechanism successfully identify the
missing type, but Filter+Relabel (Onoe and Durrett,
2019) fails.

Type DS Filter+Relabel Ours

group 0 0.0 0.56
artillery 1 0.67 0.83
regiment 1 0.19 0.73

Table 8: Case study on DS instance S1, which is la-
beled by head words.

Type DS Filter+Relabel Ours

person 1 0.00 0.05
engineer 1 0.54 0.46
writing 1 0.92 0.88

Table 9: Case study on DS instance S2, which is la-
beled by entity linking.

Case Study S2: For the context “Richard

Schickel, writing in [Time magazine] gave a mixed
review, ...”, from Table 9, we see DS wrongly as-
signed “person” and “engineer” to the entity “Time
magazine”. Both Filter+Relabel and our work suc-
cessfully lower the probability scores of the wrong
types.

5 Conclusion

In this paper, we aim to improve the performance of
ultra-fine entity typing by explicitly denoising the
DS data. Noise modeling is our key component to
denoise, where the model fully explores the correla-
tion between the query context and assigned noisy
type set, and outputs the estimated noise. To train
the noise model, we perturb on the small-scale gold
dataset to mimic the noise distribution on DS in-
stances. Furthermore, we utilize the large-scale DS
data as weak supervision to train our noise model.
The entity typing model is then trained on the gold
data set and denoised DS dataset. Experimental
results empirically prove the effectiveness of our
method on handling distantly supervised ultra-fine
entity typing.
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