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Abstract—Existing advertisements click-through rate (CTR)
prediction models are mainly dependent on behavior ID features,
which are learned based on the historical user-ad interactions.
Nevertheless, behavior ID features relying on historical user
behaviors are not feasible to describe new ads without previous
interactions with users. To overcome the limitations of behavior
ID features in modeling new ads, we exploit the visual content
in ads to boost the performance of CTR prediction models.
Specifically, we map each ad into a set of visual IDs based
on its visual content. These visual IDs are further used for
generating the visual embedding for enhancing CTR prediction
models. We formulate the learning of visual IDs into a supervised
quantization problem. Due to a lack of class labels for commercial
images in advertisements, we exploit image textual descriptions
as the supervision to optimize the image extractor for generating
effective visual IDs. Meanwhile, since the hard quantization is
non-differentiable, we soften the quantization operation to make
it support the end-to-end network training. After mapping each
image into visual IDs, we learn the embedding for each visual ID
based on the historical user-ad interactions accumulated in the
past. Since the visual ID embedding depends only on the visual
content, it generalizes well to new ads. Meanwhile, the visual ID
embedding complements the ad behavior ID embedding. Thus, it
can considerably boost the performance of the CTR prediction
models previously relying on behavior ID features for both new
ads and ads that have accumulated rich user behaviors. After
incorporating the visual ID embedding in the CTR prediction
model of Baidu online advertising, the average CTR of ads
improves by 1.46%, and the total charge increases by 1.10%.

Index Terms—advertising, cross-modal

I. INTRODUCTION

Online advertising platforms serve personalized advertise-
ments based on users’ potential interests. For example, Baidu
Search Ads (a.k.a. “Phoenix Nest”) has been successfully
using ultra-high dimensional input data and ultra-large-scale
deep neural networks for training CTR (Click-Through Rate)
models since 2013 [5], [6], [51]. In an advertising platform
based on eCPM (effective Cost Per Mille), the advertisements
fed to a specific user are ranked by the product of the bid
price offered by the advertisers and the user’s predicted CTR
from the CTR prediction model. Intuitively, it tends to put the
advertisements with high predicted CTR and bid price at the

top of the rank list to attract potential customers for advertisers
and achieve high profit for the online advertising platform.

Since the predicted CTR has a substantial impact on the rank
of the displayed ads, the deviation of the predicted CTR from
the actual CTR has a significant influence on the revenue of
advertisers and the advertising platform. If the predicted CTR
of an ad is lower than the actual CTR, the ad might not get
exposed to customers. In this case, the advertisers will not gain
the expected revenues, and the advertising platform also loses
the charges which it should have attained. On the other hand,
if the predicted CTR of an ad is higher than the actual CTR,
the ad will be misplaced at the top of the rank list but does
not lead to the expected amount of clicks from customers.
Then the advertisers will be overcharged by the advertising
platform and cannot gain a reasonable profit. Thus, an effective
CTR prediction model is a critical component for an eCPM
advertising platform to achieve satisfactory advertising effects
for the advertisers and abundant revenues for the advertising
platform.

With the prompt progress achieved in machine learning
in the past decade, we have witnessed the rapid evolution
in the architecture of the CTR prediction model. The ear-
liest works are mainly based on linear logistic regression
(LR) model [21], non-linear gradient boosting decision trees
(GBDT) [8], [14], [22]-[24], [53], Bayesian models [11] or
factorization machines (FM) [15], [34], [39]. These models
take a shallow structure and thus cannot effectively describe
high-order latent patterns in the user-ad behavior. Inspired by
the great success of deep learning in computer vision and
natural language processing, researchers attempt to build deep
neural networks (DNN) for CTR prediction. Factorization-
machine supported neural network (FNN) [49] feeds the
output of FM into a deep fully-connected neural network.
Convolutional Click Prediction Model (CCPM) [27] predicts
the CTR by a deep convolutional neural network. Zhang et
al. [50] utilize the recurrent neural network to model the
sequence of user behaviors for CTR prediction. The following
works [2], [S]-[7], [12], [16], [25], [28], [31], [32], [36],
[38], [41], [42], [45], [51], [54] explore more advanced neural
networks for more effectively modeling higher-order patterns.



Although extensive efforts have been devoted to improving
the CTR prediction on the model side, the data side in the
CTR prediction has been relatively less exploited. The lack
of training data is commonly encountered for many machine
learning tasks, including CTR prediction model training.

The existing mainstream CTR prediction model is based on
the behavior ID features based on the historical interactions
between users and ads. Each ad, as well as each user, is
assigned a unique behavior ID. Each behavior ID of a user/ad
is mapped to a vector, termed as embedding vector. The ad
embedding vectors and user embedding vectors are learned
jointly based on the historical behaviors of users on ads.
Since the user/ad embedding vectors are learned based on
historical behaviors, the quality of the learned features is
heavily dependent on the richness of users’ past behaviors
on ads. When a new ad is added to the advertising system,
we have no access to the user-ad behavior on this new ad. It
leads to the lack of the training data issue, and the behavior ID
embedding for this new ad is not reliable at all for predicting
the CTR of any user on the ad. The lack of training data for
new ads is normally termed the cold-start problem.

A straightforward solution to solving the cold-start problem
is using content-based features by understanding the visual
content of ads [10], [30]. Specifically, Mo et al. [30] learn
image features of display ads directly from raw pixels and
user feedback in the target task. Ge et al. [10] exploits
both ad image features and user behavior image features.
Nevertheless, due to the high computational cost of image
feature extraction, Mo et al. [30] and Ge et al. [10] adopt a
pre-trained image feature extractor to get the image feature in
the offline phase and then use the extracted image feature for
predicting CVR/CTR in the online phase. Since the feature
extractor is not related to CVR/CTR prediction in the training
phase, the extracted image features might not be effective for
CVR/CTR prediction. Zhao et al. [52] devise a pre-ranking
model. When an advertiser uploads ads, the offline pre-ranking
model determines inferior and superior ads based on their
visual content. Only the superior ads with attractive visual
content will be fed into the online ranker for further ad display.
Since the pre-ranking model is conducted in the offline phase,
the inefficiency caused by complex feature extraction is no
longer an issue, and it makes the end-to-end training of feature
extractor feasible. The offline pre-ranking model is trained by
the accumulated historical data from all users in a learn-to-rank
manner. Since the training data is collected from all users,
it reveals the preference of the majority of users and might
not reveal the preference of a specific user for personalized
advertising.

In this work, we seek to model the visual content in ads
for boosting the performance CTR prediction effectively. We
map the visual content of an ad into a set of visual indices
(IDs) through supervised clustering. After we obtain the visual
IDs for ads, we learn a visual embedding vector for each
visual ID based on the user’s clicks on ads. The learned visual
ID embedding vector for each ad can effectively describe the
visual content in an ad and can well generalize to ads newly

added to the advertising system. Meanwhile, the visual content
encoded in the visual ID embedding vector is complementary
to the ad behavior ID embedding vector, which is beneficial
to CTR prediction for not only new ads but also the ads
which have accumulated rich user behaviors. In this case, as
visualized in Figure 1, both ad behavior ID embedding and
visual ID embedding are the input of the CTR prediction
model, and they work together to achieve a more accurate
CTR prediction.
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Fig. 1. The structure of the proposed model. Different from the traditional
CTR prediction model using only ad behavior ID embedding and user behavior
ID embedding, our model additionally incorporates the visual content by
devising a visual ID embedding for each ad (the purple rectangular). Since
the visual ID embedding is only dependent on the visual content of the ad,
it generalizes well for the new ads.

To generate the visual IDs for ads, a straightforward solution
is using k-means to cluster the visual features from an off-
the-shelf image feature extractor, e.g., a convolutional neural
network. Nevertheless, the image features from the off-the-
shelf image extractor such as ResNet-50 [13] pre-trained on
ImageNet [3] might not be effective for discriminating the
commercial images. To bridge the domain gap between the
pre-trained dataset and the commercial application, we can
fine-tune the pre-trained image extractor on commercial im-
ages in ads. Traditionally, fine-tuning the ResNet-50 requires
human labours to annotate the label of each image, which is
prohibitively expensive for the huge-scale commercial image
corpus. Inspired by the recent success achieved by CLIP [33]
in self-supervised learning, we exploit the textual description
of the image in an ad as the supervision and construct a con-
trastive learning task to optimize the image feature extractor.
After contrastive learning through supervision from textual
descriptions of images, we can obtain the visual features. But
it still deviates from our goal of obtaining the visual IDs. Thus,
we devise a supervised clustering module based on the learned



codebooks when fine-tuning the image feature extractor. Since
the hard assignment in clustering is not differentiable, we
soften the cluster assignment for achieving end-to-end training.
Meanwhile, to enrich the codebooks for partitioning the visual
feature space into finer cells, we adapt residual quantization
and product quantization. After training the image feature
extractor as well as the codebooks for supervised clustering
using the textual description through contrastive learning, we
use them to generate the visual IDs. The visual IDs are further
mapped into visual ID embeddings, which will be the input
of the CTR prediction model.

In summary, the contributions of this work are four-fold:

o We propose to incorporate visual content in the CTR pre-
diction model through learning the visual ID embedding
for ads. The learned visual ID embedding generalizes
well to new ads and complements the ad behavior ID
embedding.

e We devise an effective approach to learn the visual
ID using the supervision from textual descriptions in
a contrast-learning manner. We formulate the visual ID
learning into a supervised clustering problem based on
learned codebooks. To support end-to-end learning, we
soften the cluster assignment and make it differentiable.

« To enrich the codebooks for partitioning the visual feature
space into finer cells, we adopt both residual quantization
and product quantization.

o We launched the proposed CTR prediction model incor-
porating the visual content in Baidu’s online advertising
system. After launching, we achieved a 1.46% improve-
ment in CTR and a 1.10% increase in total charges.

II. RELATED WORK

CTR prediction model. CTR prediction is a long-standing
problem in online advertising and recommender system. The
focus of CTR prediction is on learning an effective embed-
ding for users as well as products (ads). Early works on
embedding learning are mainly based on linear regression
(LR) [1], [17], [29], [44] or factorization machine (FM) [15],
[19], [20], [34], [35]. Specifically, LR-based methods use
a linear projection to map the features into an embedding
vector. The weights of the linear projection are optimized
based on the binary cross-entropy loss. In parallel, FM-
based methods map features into a latent space and model
the interactions between users and products (ads) through
the inner product of their embedding vectors. Inspired by
the great success achieved by deep learning in computer
vision [13] and natural language processing [40], several
methods exploit deep neural networks to learn embedding
vectors. Specifically, CNN-based CTR prediction model [27]
exploits the interactions between neighbors in the feature space
for enhancing the discriminating power of embedding features.
Zhang et al. [49] utilizes deep neural networks to enhance the
features from traditional embedding methods such as FMs,
restricted Boltzmann machines (RBMs), and denoising auto-
encoders (DAEs) for generating more effective embedding

vectors. Wide&Deep learning [2] jointly trains wide linear
models and deep neural networks to combine their benefits
for the recommender system. Product-based Neural Networks
(PNN) [32] investigates the interactions between diffident
features through inner-product and outer-product operations
in neural networks for CTR prediction. Deep crossing [37]
builds a deep neural network that automatically combines
features to produce superior models. DeepFM [12] combines a
factorization machine (FM) and a deep neural network (DNN).
In DeepFM, the FM extracts low-order features, whereas the
DNN generates the high-order features. DKN [41] devel-
ops a word-entity-aligned and knowledge-aware convolutional
neural network to fuse s semantic-level and knowledge-level
representations of news. Deep Interest Network (DIN) [55]
models the user’s rich historical behaviors through a se-
quence model. Deep Interest Evolution Network (DIEN) [54]
improves DIN by using a more advanced sequence model,
GRU. Deep Session Interest Network (DSIN) [7] also focuses
on modeling users’ behaviors in a sequence of sessions. It
adopts Transformer [40], which has shown better performance
than GRU in modeling sentences and documents. Search-
based Interest Model (SIM) [31] models the user’s lifelong
sequential behavior data through Transformer to exploit richer
user behaviors. In these aforementioned methods, the CTR
prediction is mainly based on the user’s ID embedding and
the item’s ID embedding learned from the historical user
behaviors. Thus, they might not perform well when the users’
historical behaviors are not sufficient. Different from above
works, we utilize the visual content to complement the user’s
ID embedding and the item’s ID embedding to achieve good
CTR prediction performance for new ads and new users.

Visual features in CTR prediction. Mo er al. [30] feed the
raw images in products (ads) into a convolutional neural net-
work (CNN) and train the CNN through user-click supervision.
It addresses the cold start problem when the ID features are
not reliable when the historical behaviors are not rich enough.
Ge et al. [10] extract image features not only on the products
(ads) side but also on the user side. Zhao et al. [52] observes
the efficiency problem encountered in [10], [30] and moves
the image feature extractor to the offline phase. Specifically,
before ranking the products (ads) through the CTR prediction
model, they pre-rank the products (ads) based on their visual
features. Category-specific CNN (CSCNN) [26] early fuses
the product category with the visual image when modeling
the product visual content and meanwhile devise an efficient
architecture to make the online deployment of CNN model
feasible. Wang et al. [43] proposes a hybrid bandit model
using visual content as priors for creative ranking. Different
from the above-mentioned methods, we map each ad into a
visual ID. We train our image encoder and the visual ID
generator based on the text-image pairs in an end-to-end
manner. Then we learn the visual ID embedding using the
objective of optimizing CTR prediction accuracy. Thus, our
visual ID embedding not only encodes the visual content but
also effectively describes the user-item interactions. Recently,



the teams in Baidu Research and Baidu Search Ads developed
a series of works [46]-[48] to exploit the use of vision BERT
for boosting the text-visual relevance for video ads.

III. VISUAL ID GENERATION

Supervision signal. We denote the image in the ad by I and
denote the visual index of the image by ID;. Straightforwardly,
ID; can be obtained from k-means clustering on ad image fea-
tures extracted from an off-the-shelf image feature extractor,
e.g., ResNet pre-trained on ImageNet dataset. Nevertheless,
there is a domain gap between the natural images in ImageNet
and the commercial images in the ads. A solution to adapting
the target domain is fine-tuning the pre-trained ResNet on the
commercial images in the ads. But there are no class labels
available for supervising the network fine-tuning, and it is
prohibitively expensive to annotate the image labels manually.
Inspired by the great success achieved by CLIP [33] in self-
supervised learning, we exploit the textual description of the
images in the ad as the supervision to fine-tune the network
through contrastive learning. We formulate the process of
learning visual IDs for images in ads into a deep supervised
clustering problem. Below we introduce the details.

Deep supervised clustering. We denote the textual description
of the image I by 7. We denote the image feature extractor
by Encoderjy,g and that for encoding the textual description
by Encoderiy;. We denote the image feature of I generated
from Encoderiy,g by x € R? and the text feature of 7' from
Encoderiy by y € R<. That is,

x = Encoderimg (1), y = Encoder (T). (D

To make the clustering feasible, we devise a dictionary denoted
by C = {c;},. C are weights of the network which
are randomly initialized and optimized through contrastive
learning. Straightforwardly, we can map the visual feature x
from the image extractor to its closest codeword in C. In this
case, the visual ID of the image I is just the index of its closest
codeword:

ID; = argmax;cy v — [lci — %[z, @)

where ||.|]2 denotes the Lo norm. The visual feature i is
mapped to cip, to learn C through contrastive learning.
Nevertheless, the above formulation can only optimize C but
fail to back-propagate the gradient to update the image encoder
due to the fact that the hard assignment in Eq. (2) is not
differentiable. Thus, we soften the hard assignment and map
the image feature x into a weighted summation of codewords:

N
X = Z SiCi, (3)
i=1

where s; is the weight computed by
e Bllx—ecill2

N _Blx—cil,’
SN e blxel:

“4)

S; =

where [ is a pre-defined positive constant controlling the soft-
ness of the assignment. When 8 — 400, the soft-assignment
operation in Eq. (3) will degenerate to the hard assignment. To
approximate the hard assignment well, S cannot be set to be a
small value. On the other hand, if 3 is too large, the softmax
function in Eq. (3) tends to fall into the saturation region and
leads to gradient vanishing. In implementation, we set 5 to be
a small value in the first epoch and gradually increases it to a
large value in the training process.

To partition the feature space into a fine level, we need to
set the number of codewords in the codebook C large enough.
Nevertheless, the increase in the number of codewords will
inevitably lead to an increase in memory and computation
costs. To achieve high efficiency, we conduct a two-level
quantization by exploiting residual quantization. In the first
level, we map the feature x into codewords from the coarse-
level dictionary Co = {co;}2° in a soft-assignment manner:

No
X = Z 50,i€0,i (5)
i=1
where
efﬂﬂxfco,in
S04 = ©)
’ Z;Vﬂ e—Bllx—cojll2’
Then we compute the residual vector r:
r=x-—X. 7

After that, we conduct product quantization (PQ) [9], [18] to
split the image residual features r € R? into K segments:

I'—>[I‘1,"',I'K]7 (8)

and each segment of the residual vector ry, € R, Vk € [1, K].
We conduct clustering on each split segment of the residual
vector rj based on the split-specific codebook Cp, = {ck,i}fvz’“l,
where ¢y ; € R%. To be specific, we conduct

Ni

r, = E 8k,iCl.i &)
i=1
where
e—ﬁﬂl‘k—ck,iﬂ’z

Sk, = N .
’ —Bllrx—ck,jll2
SN eBliri—ensl

(10)

After that, {#},}/ | are concatenated into the recovered resid-
ual feature:
r [Py, -, Tkl (11)

The recovered feature vector is obtained by summing up the
recovered residual feature © and coarse-quantize vector X in
Eq. (5):

X=r+x (12)
Straightforwardly, the coarse-level codebook Cy and K fine-
level sub-codebooks {Cy, }X_, can partition the whole feature
space into H?:o Ny, cells. But the total memory complexity
of storing the codebooks {C}& ) is only O(dN).
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Fig. 2. The pipeline of learning visual IDs. Given a batch of N text-image pairs. An image is only relevant with the text in the pair and is irrelevant with
other IV — 1 images. The text extractor generates the text features {yl}ﬁi 1 and the image extractor generates the image features {x,}f\; ;- An image feature
x; is mapped into a weighted summation of its neighboring codewords X, through the soft assignment. Then the similarity between the text features {y; } f\’: 1
and the mapped image codewords {5{2}{\; , are optimized through the contrastive loss.

Contrastive learning. The contrastive learning is conducted
within each mini-batch. Given a mini-batch of text-image pairs
{(I;, T;)}B,, the image I; is only relevant with the text T}
and is irrelevant with other texts, T; (j # ). Thus, after we
obtain the text features {y;}2 ; and the mapped image features
{%;}2, from the codebooks {C}£_; based on Eq. (3)-(12),
we construct the contrastive loss defined as

L= (13)

1 B esim(%i,y:)
- = log(
B
B =1 Z]:l
where sim(-, -) is the function measuring the cosine similarity
between two vectors defined as

eSim(*i 7Yi)

) +log(—5

esim(%;,yi) i1 esim(%i,y;)

sim(x,y) = x'y
P el
The contrastive learning loss aims to enlarge the gap between
similarities of positive pairs and those of negative pairs.
The process of learning image encoder, text encoder and
dictionaries are visualized in Figure 2 and summarized in
Algorithm 1.

(14)

Visual ID generation. After we train the models using the
contrastive learning, we use the image encoder Encoderiyg
to extract the image feature x. Then x is mapped to its
closest codewords in the learned coarse-level dictionary Cy =
{co.i}Yo,. We define the index of the mapped codeword in Cy
as the visual ID ID{. Then, we compute the residual feature
vector r = X — co,ipy. After that, r is equally split into K
segments {rk}szl, and each segment is mapped to its closest
codeword in the codebook C; = {ck,i}gvz’“'l. We define the
index of the closest codeword in each dictionary Cy, as the
visual ID ID}, that is,

ID} = argmin,||ry — ck 4. (15)

Algorithm 1 Image encoder and dictionary learning.
Input: The image encoder Encoderiyg, the text encoder
Encoderx, K + 1 codebooks {Cx }_, and text-image pairs
{I;, T;}B |, the positive constant 3.
for i €[1,B]

x; < Encodering(1;)

yi < Encodery (T})

_ N ~Blx—co,;ll2

Xi =) i Coazile—a—uxim

r, < X; — ii B

[ri,la e 7ri,K] Iy
for £ € [1, K]

e Blirik—cp jll2

ik = Ej:l Cl:j Z{\Ll e Bliri k—cp 1ll2
Py [T, Pig] X Ti+X

X ¥i
_ —1\B i M2y ill2
£=F o | = 5 —
ZB Le [ERPYEZIP
=
Update Encoderiyg, Encoderg, the codebooks {Cj}X
based on L using stochastic gradient descent.

We visualize the process of generating visual ID in Figure 3.
In total, for each image, we generate K + 1 visual IDs
({ID}}E ), which will be used as the input of the CTR
model to encode the visual content of the ad. It is worth noting
that, the image extractor Encoder;,,g and K + 1 codebooks
{C,}K , are only used in generating visual ID. They will
not be involved when learning the visual ID embedding for
CTR prediction. An alternative choice is to plug the image
extractor Encoderin, and the codebooks {Ck}kK:O into the
CTR prediction model to achieve end-to-end training. But it
is prohibitively expensive due to the fact that the image feature
extractor is normally heavy.
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Fig. 3. The pipeline of generating visual IDs. An image is fed into the image
encoder to generate the image feature x. It first finds its closest codeword
in the coarse-level codebook Cop = {CO,i}ﬁ\;ol and the index of the losest
codeword is the first visual ID, IDg. Meanwhile, we obtain the residual vector
r = X — Cg,1p,,» Which is equally split into K segments [r1,-- - ,rg]. Each
segment r is mapped to its closest codeword in the dictionary Cj, and the
index of the closest codeword in Cy corresponds to the visual ID, ID . In
total, we obtain K + 1 visual IDs for an image.

IV. CTR PREDICTION MODEL LEARNING

The CTR prediction model in our advertising platform takes
the user ID, the ad ID and the ad visual ID as input to predict
the CTR. We denote a user by w and an ad by a. The CTR
prediction model consists of embedding layers, the ad tower,
the user tower and the prediction head. To be specific, the user
embedding layer maps the ID of the user u to a vector:

u = EMB 4 (ID,,), (16)
the ad embedding layer maps the ID of the ad a to a vector:
a=EMB.q(ID,). a7

The visual embedding layer maps the ad’s each visual IDs ID})
(k € 0, K]) to a feature vector in the following manner

0 v
X = EMBE/is)ual (IDO) (18)
r, = EMBY (DY), Vk € [1, K].

Then the visual embedding of the ad v is obtained by
concatenating {rj} and summing up the concatenated vector
with x

r = [rlv"' ,I'K],

V=X-+r.

19)

The user tower takes u as input, and generates the user feature:

1 = Towerger (1). (20)

In parallel, the ad tower takes a and v as input, and generates
the ad feature:

a = Tower,q([a, v]). (1)

In practice, both Tower,q and Tower,s., are implemented by
several fully-connected layers. The prediction head takes the
user feature @ € R and the ad feature & € R” as input and
generates the predicted CTR:

§ = sigmoid ([, a]w + b), (22)

where w € R2P and b € R are weights of the prediction head,
and sigmoid is the function defined as sigmoid(z) = 1=
In the training phase, we construct a binary cross-entropy loss
to update the weights CTR prediction model. To be specific,
given the predicted CTR § € (0, 1) and the ground-truth CTR
by y € {0, 1}, the binary cross-entropy loss is constructed by

Lpce = —[(1 — y)log(7) + ylog(1 — 7)]. (23)

Algorithm 2 CTR prediction model learning.

Input: The user-ad pairs {a;,u;}£, and the ground-truth

labels {y; }}£,, user embedding layer EMBqe;, ad embedding
1)

layer EMB,q4, and visual embedding layers EMB_,/ ., and
EMngual, user tower Toweryser, ad tower Tower,q, the

prediction head with weights {w, b}
for ¢ €[1,M]

fetch the ad ID for a;, 1D,

a = EMB,q(ID,)

fetch the visual IDs of a;, {ID}}H<

x =EMBY) (IDY)
for k£ €[1,K]

Tx = EMBEz]fs)ual(IDZ)

r= [1‘17"' ,I‘K]

v=r-+x

a = Tower,q([a, v]

fetch the user ID for u;, ID,,

u = EMB s (ID,,)

1 = Towerse, (1)

§; = sigmoid([, a]w + b),
€=~ Sily (1= wi)log(i) + yilog(1 — i)
Update EMByser, EMB,g, EMBY  EMBY)  Tower,ger,
Tower,q, W, and b using £ by stochastic gradient descent.

Algorithm 2 summarizes the CTR prediction model learning.

V. EXPERIMENTS

Implementation. We implement the image encoder
Encoderiy,e by ResNet50 [13] with 50 layers and the
text encoder Encoderiyy by the BERT-base model [4] with
12 Transformer layers and 768 hidden size. ResNet50 is
pre-trained on ImageNet dataset and the BERT-base model
is pre-trained on sentences from the BooksCorpus dataset
with 800 Million words and English Wikipedia with 2,500
million words. We use the hidden feature before the last
classification layer of ResNet50 as the image feature x and
use the hidden state of the [cls] token in the last layer of the
BERT-base as the text feature y. To make the dimension of
the image feature identical to that of the text feature, we add
a fully-connected layer to project the feature obtained from
the ResNet to the 768-dimensional vector. By default, we set
the number of codebooks for the residual vector, K, as 4.
Meanwhile we set the default number of codewords in each
codebook Cg, Ni, as 256. In the training process, we set the
initial value of S as 1 and gradually increase it to 10.



Training data. To train the image extractor Encoderjy,g, the
text extractor Encoderiy; and the codebooks {C;g}fzo, we
use 50 million text-image pairs collected from our advertising
system. To train the CTR prediction model, we use 70 million
user-click data per day collected from our advertising system
and the model is fine-tuned for around 1 month.

A. Offline Experiments

We evaluate the influence of our model on the CTR predic-
tion in the offline phase. We first define the CTR prediction
model using only ad behavior ID features and user behavior
ID features as the baseline. We use the AUC improvement
of CTR prediction over the baseline model as the evaluation
metrics. Meanwhile, we use an observation window of 40-day
length to demonstrate more details.

Residual quantization. By default, we conduct a two-level
residual quantization. In the first level, we conduct a coarse
level quantization using Cy and then conduct the second-
level quantization on the residual. Here, we compare the two-
level residual quantization with a single-level quantization by
removing the first-level coarse level quantization. We report
the AUC difference between the model with the baseline
model along 40 days in Figure 4.

x10™

15+
=10
&)
S
=

{ —with residual
0 ’_,' - - ‘w/o residual ||

1 5 10 15 20 25 30 35 40
Day

Fig. 4. Comparisons with the setting without residual quantization.

As shown in the figure, using the residual quantization,
the model can get more improvement compared with its
counterpart without residual quantization. To be specific, at
the 40-th day, using residual quantization, the model achieves
a 0.1418% AUC improvement, whereas the model without
residual quantization only achieves a 0.1242% AUC increase.

Comparisons with alternative configurations. We soften the
quantization operation as Eq. (3) and Eq. (4) to make it differ-
entiable. Thus, the codeword assignment can be incorporated
into a neural network, and the codewords can be learned in
an end-to-end manner. An alternative solution is a two-stage
learning process. In the first stage, we can learn the raw feature
vectors without quantization through the contrastive loss based
on the text-image pairs. After that, we use the unsupervised k-
means clustering to conduct residual quantization and product
quantization for generating the codebooks and the visual
IDs. We term this configuration as the two-stage baseline.

%107
157
:'.‘-OE 10 [ ,-./\v"’
[a) 4 "\ 'I'\\‘/ ~/ )
Ours
. - = w/o quant
0 ----two-stage| |

1 5 10 15 20 25 30 35 40
Day

Fig. 5. Comparisons with the two-stage setting and the setting without
quantization.

Meanwhile, we also compare with the baseline directly using
the raw feature vectors learned without quantization through
the contrastive loss based on text-image pairs as the visual rep-
resentation for CTR prediction. We term it as w/o quantization
baseline. As shown in Figure 5, ours consistently outperforms
two compared baselines, demonstrating the effectiveness of
learning codebooks in an end-to-end manner.

Influence of the number of codewords. A larger number
of codewords can partition the feature space into finer cells
and leads to smaller quantization errors. We evaluate the
influence of the number of codewords, /N, on the AUC of
CTR prediction. To this end, we show the results when N
varies among {64, 256, 1024 }. As shown in Figure 6 (a), when
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Fig. 6. The influence of parameters on the performance.
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Fig. 7. Visualization of ads with the same visual IDs.

N increases from 64 to 256, the AUC of CTR prediction
gets improved considerably. But when N further increases to
1024, the AUC gets saturated. Since the increase of N will
bring more computation cost, considering both efficiency and
effectiveness, we set N = 256 by default.

Influence of the number of segments. We split the residual
vector into K segments and conduct product quantization
based on split segments. A larger K also leads to a finer
partition of the feature space and smaller quantization errors.
We evaluate the influence of the number of segments, K, on
the AUC of CTR prediction. To this end, we show the results
when K is chosen from {1,2,4}. As shown in Figure 6 (b),
when K increases from 1 to 4, the AUC of CTR prediction
gets boosted significantly. To be specific, when K = 1, at
the 40-th day, the AUC improvement over baseline is only
0.0903%, whereas the AUC improvement is 0.1418% when
K = 4. But the increase of K also brings more computational
cost. Thus, to balance the efficiency and effectiveness, we do
not further increase K beyond 4 and set K = 4, by default.

Influence on new ads and old ads. As we know, incorporating
the visual content cannot bring more benefits to new ads since
their ID features are not reliable. Here, we demonstrate the
influence of our model in new ads and the old ones. As shown
in Table I, using the visual ID embedding, it has a more
influential impact on new ads than old ads. To be specific,

TABLE I
THE INFLUENCE OF VISUAL ID EMBEDDING ON NEW ADS AND OLD ADS.

old ads
# of instances
61,982,597

new ads
# of instances
4,935,208

AUC diff
+0.1238%

AUC diff
+0.6098%

for new ads, it brings +0.6098% increase in AUC of the CTR
prediction, whereas it only brings +0.1238% increase for old
ads.

Visualization. In Figure 7, we visualize the ads with the
same visual IDs, {ID}}}_,. It is not difficult to observe
from the figure that the ads with the same visual IDs have
a similar visual appearance, demonstrating the effectiveness
of the learned visual IDs.

B. Online Experiments

TABLE I
THE INFLUENCE OF LAUNCHING THE PROPOSED MODEL IN OUR
ADVERTISING PLATFORM. NOTE THAT “+ - %” IS RELATIVE
IMPROVEMENT FOR ONLINE EXPERIMENTS.

CTR
+1.46%

Charge
+1.10%

In Table II, we show the influence of launching the proposed
model in Baidu online advertising platform. Before launching



our model, the CTR prediction model in our advertising
platform uses only the ad ID features and user ID features
based on the users’ historical behaviors. As shown in the
table, after launching our model, the charge of our advertising
platform gets increased relatively by +1.10%, and the CTR
of the ads gets improved relatively by +1.46%. That is, the
launching of the proposed model brings significant revenue
boosts for the advertisers as well as our ads platform.

VI. CONCLUSION

The traditional CTR prediction model relies on the user be-
havior ID features and product (ad) behavior ID features. But
the effectiveness of these ID features requires rich historical
user-product (ad) behaviors, and thus they do not generalize
well to the new products (ads). In this work, we investigate
exploiting visual content in ads to boost the CTR prediction
accuracy. We adopt the textual description of images as the
supervision to learn the image feature extractor and map
the visual content in each ad to visual IDs. Then we learn
the embedding for visual IDs based on the user’s clicking
behaviors. We feed the learned visual ID embedding besides
the ad behavior ID embedding and the user behavior ID
embedding into a CTR prediction model to generate a more
reliable CTR prediction. The systematic offline experiments
demonstrate the improved AUC of the CTR prediction by
incorporating the visual content. After launching the proposed
model in Baidu advertising platform, we achieve a 1.10%
charge increase and a 1.46% CTR increase.
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