
FeatureBox: Feature Engineering on GPUs
for Massive-Scale Ads Systems

Weijie Zhao, Xuewu Jiao, Xinsheng Luo, Jingxue Li, Belhal Karimi, Ping Li

Cognitive Computing Lab, Baidu Research
Baidu Search Ads (Phoenix Nest), Baidu Inc.

10900 NE 8th St. Bellevue, Washington 98004, USA
No. 10 Xibeiwang East Road, Beijing 100193, China

{weijiezhao, jiaoxuewu, luoxinsheng, lijingxue01, belhalkarimi, liping11}@baidu.com

Abstract—Deep learning has been widely deployed for online
ads systems to predict Click-Through Rate (CTR). Machine
learning researchers and practitioners frequently retrain CTR
models to test their new extracted features. However, the CTR
model training often relies on a large number of raw input
data logs. Hence, the feature extraction can take a significant
proportion of the training time for an industrial-level CTR
model. In this paper, we propose FeatureBox, a novel end-to-
end training framework that pipelines the feature extraction and
the training on GPU servers to save the intermediate I/O of
the feature extraction. We rewrite computation-intensive feature
extraction operators as GPU operators and leave the memory-
intensive operator on CPUs. We introduce a layer-wise operator
scheduling algorithm to schedule these heterogeneous operators.
We present a light-weight GPU memory management algorithm
that supports dynamic GPU memory allocation with minimal
overhead. We experimentally evaluate FeatureBox and compare
it with the previous in-production feature extraction framework
on two real-world ads applications. The results confirm the
effectiveness of our proposed method.

Index Terms—CTR Prediction; GPU; Large-Scale Machine
Learning Framework

I. INTRODUCTION

Deep learning has been widely employed in many real-
world applications, e.g., computer vision [10], [13], [28], [5],
data mining [8], [22], [14], [17], [21], [33], and recommen-
dation systems [3], [2], [29], [35], [20], [15], [32]. In recent
years, sponsored online advertising also adopts deep learning
techniques to predict the Click-Through Rate (CTR) [7], [38],
[19], [40], [9], [24], [27], [36], [34], [31]. Unlike common ma-
chine learning applications, the accuracy of the CTR prediction
is critical to the revenue. In the context of a many-billion-dollar
online ads industry, even a 0.1% accuracy increase will result
in a noticeable revenue gain [37]. In this work, we identify two
major paths to improve the model accuracy. The first area is
to propose different and enhanced model architectures. Every
improvement in this direction is considered a fundamental
milestone in the deep learning community—and does not
happen often in the CTR prediction industry. The other (more

practical) is feature engineering, i.e., to propose and extract
new features from the raw training data. The benefit of feature
engineering is usually neglected in common deep learning
applications because of the general belief that deep neural
networks inherently extract the features through their hidden
layers. However, recall that CTR prediction applications are
accuracy-critical, hence, the gain from an improved feature
engineering strategy remains attractive for in-production CTR
prediction models. Therefore, in order to achieve a better
prediction performance, CTR deep learning models in real-
world ads applications tend to utilize larger models and more
features extracted from raw data logs.

Testing on the historical and online data is the rule-of-the-
thumb way to determine whether a new feature is beneficial.
Every new feature with positive accuracy improvement (e.g.,
0.1%) is included into the CTR model. Machine learning
researchers and practitioners keep this feature engineering
trial-and-error on top of the current in-production CTR model.
As a result, the in-production CTR model becomes larger and
larger with more and more features. To support the trial-and-
error research for new features, it requires us to efficiently train
massive-scale models with massive-scale raw training data in a
timely manner. Previous studies [37] propose hierarchical GPU
parameter server that trains the out-of-memory model with
GPU servers to accelerate the training with GPUs and SSDs.
With a small number of GPU servers, e.g., 4, can obtain the
same training efficiency as a CPU-only cluster with hundreds
of nodes. The training framework focuses on the training stage
and assumes the training data are well-prepared—the training
data are accessed from a distributed file system.

However, preparing the training data is not trivial for
industrial level CTR prediction models—with ∼ 1012 features.
The feature extraction from raw data logs can take a significant
proportion of the training time. In addition to the frequent re-
training for new feature engineering trials, online ads systems
have to digest a colossal amount of newly incoming data to
keep the model up-to-date with the optimal performance. For
the rapid training demands, optimizing the feature extraction
stage becomes one of the most desirable goals of online ads
systems. This latter point is the scope of our contribution.

HDFS

Feature Extraction
MapReduce

Distributed
Training on GPUs

Raw Data 50 TB

...

Intermediate I/O 200 TB Extracted Features 15 TB

HDFS Feature Extraction Training

GPU Servers

Within GPU
Memory

Original

FeatureBox

I/O Overhead

Fig. 1. A visual illustration for the original feature extraction and training workflow (upper); and our proposed FeatureBox (lower).

Training workflow. The upper part of Figure 1 depicts a
visual illustration of the feature extraction. Due to the large
amount of raw data, the original feature extraction task is
constructed as MapReduce [4] jobs that compute feature
combinations, extract keywords with language models, etc.
Those MapReduce jobs frequently read and write intermediate
files with the distributed file system (i.e., HDFS [1]). The
intermediate I/O can be as large as 200 TB. Once the features
are extracted, we also need to materialize them to the ∼15 TB
extracted features to the HDFS so that the following distributed
training framework can read them from the distributed file
system. This training workflow incurs rapid communication
with HDFS that generates heavy I/O overhead.

One straightforward question can be raised: Can we perform
the feature extraction within GPU servers to eliminate the
communication overhead? In the lower part of Figure 1, we
depict an example for the proposed training framework that
combines the feature extraction and the training computation
within GPU servers. The intermediate I/O is eliminated by
integrating the feature extraction and the training computation
into a pipeline: for each batch of extracted features, we feed
the batch to the model training without writing them as
intermediate files into HDFS.

Challenges & Approaches. However, moving the feature
extraction to GPU servers is non-trivial. Note that the number
of GPU nodes is much fewer compared with the CPU-only
cluster. We acknowledge two main challenges in embedding
the feature extraction phase into GPU servers:

1) Network I/O bandwidth. The network I/O bandwidth of
GPU servers is by orders of magnitude smaller than
the bandwidth of CPU clusters because we have fewer
nodes—the total number of network adapters is lower.
We materialize frequently-used features as basic features
so that we can reuse them without extra I/O and compu-
tations. In addition, we use column-store that reads only
the required columns in the logs to reduce I/O.

2) Computing Resources. With a smaller number of nodes,
the CPU computing capability on GPU servers is also
orders of magnitudes less powerful than the CPU cluster.
We have to move the CPU computations to GPU opera-
tions to bridge the computing power gap.

3) Memory Usage. The feature extraction process contains
many memory-intensive operations, such as dictionary
table lookup, sort, reduce, etc. It is desired to have
an efficient memory management system to efficiently
perform dynamic memory allocations on GPU servers
with limited memory.

We summarize our contributions as follows:
• We propose FeatureBox, a novel end-to-end training

framework that pipelines the feature extraction and the
training on GPU servers.

• We present a layer-wise operator scheduling algorithm
that arranges the operators to CPUs and GPU.

• We introduce a light-weight GPU memory management
algorithm that supports dynamic GPU memory allocation
with minimal overhead.

• We experimentally evaluate FeatureBox and compare it
with the previous in-production feature extraction frame-
work on two real-world ads applications. The results
confirm the effectiveness of our proposed methods.

II. PRELIMINARY

In this section, we present a brief introduction of CTR
prediction models and the hierarchical GPU parameter server.
Both concepts are the foundations of FeatureBox.

A. CTR Prediction Models

About a decade ago, CTR prediction strategies with large-
scale logistic regression model on carefully engineered fea-
tures are proposed in [6], [11]. With the rapid development
of deep learning, deep neural networks (DNN) attract a lot of

attention in the CTR research community: The DNN model,
with wide embedding layers, obtains significant improve-
ments over classical models. The model takes a sparse high-
dimensional vector as input and converts those sparse features
into dense vectors through sequential embedding layers. The
output dense vector is considered a low-dimensional represen-
tation of the input and is then fed into the following layers
in order to compute the CTR. Most proposed CTR models
share the same embedding layer architecture and only focus
on the following neural network layers, see for e.g., Deep
Crossing [26], Product-based Neural Network (PNN) [25],
Wide&Deep Learning [2], YouTube Recommendation CTR
model [3], DeepFM [12], xDeepFM [18] and Deep Interest
Network (DIN) [39]. They introduce special neural layers for
specific applications that capture latent feature interactions.

...

...

...Input
Features

~1012

~103

...

CTR

Dense
~1 GB

Sparse
~10 TB

Fig. 2. An example for the CTR prediction network architecture.

We summarize those architectures in Figure 2. The input
features are fed to the neural network as a sparse high-
dimensional vector. The dimension of the vector can be ∼1012
or more. The input features for CTR models are usually from
various resources with categorical values, e.g., query words,
ad keywords, and user portrait. The categorical values are
commonly represented as a one-hot or multi-hot encoding.
Therefore, with categorical values with many sources, the
number of dimensions is high (∼1012) for industry CTR
prediction models. Note that, as demonstrated in [37], feature
compression or hashing strategies [30], [16] that reduce the
number of dimensions are not fully applicable to the CTR
prediction model because those solutions inevitably trade off
the prediction accuracy for better computational time—recall
that even a small accuracy loss leads to a noticeable online ad-
vertising revenue decrease, which is unacceptable. We embed
the high-dimensional features through an embedding layer to
obtain a low-dimensional (∼103) representation. The number
of parameters in the embedding layer can be 10 TB or more
due to the high input dimension. After the low-dimensional
embedding is obtained, we fed this dense vector to the neural
network components to compute the CTR.

B. Hierarchical GPU Parameter Server

Due to the extremely high dimension of the embedding
layer, the model contains more than 10 TB parameters which
do not fit on most computing servers. Conventionally, the
huge model is trained on an MPI cluster. We partition the
model parameters across multiple computing nodes (e.g.,
150 nodes) in the MPI cluster. Every computing node is
assigned a batch of training data streamed directly from the
HDFS. For each node, it retrieves the required parameters
from other nodes and computes the gradients for its current
working mini-batch. The gradients are then updated to the
nodes that maintain the corresponding parameters through
MPI communications. Recently, hierarchical GPU parameter
servers [37] are proposed to train the massive-scale model
on a limited number of GPU servers. The key observation of
the hierarchical GPU parameter server is that the number of
referenced parameters in a mini-batch fits the GPU memory
because the input vector is sparse. It maintains three levels of
hierarchical parameter servers on GPU, CPU main memory,
and SSD. The working parameters are stored in GPUs, the
frequently used parameters are kept in CPU main memory, and
other parameters are materialized as files on SSDs. The upper-
level module acts as a high-speed cache of the lower-level
module. With 4 GPU nodes, the hierarchical GPU parameter
server is able to be 2X faster than 150 CPU-only nodes in
an MPI cluster. Our proposed FeatureBox follows the design
of the training framework in the hierarchical GPU parameter
server and absorbs the feature engineering workload into GPUs
to eliminate excessive intermediate I/O.

III. FEATUREBOX OVERVIEW

In this section, we present an overview of FeatureBox. We
aim at allowing the training framework to support pipeline
processing with mini-batches so that we can eliminate the
excessive intermediate resulting I/O in conventional stage-
after-stage methods. Figure 3 depicts the detailed workflow
of the FeatureBox pipeline.

Read Basic
Features

Clean Views

Join Views

Extract Features Merge Features

Read Views

HDFS

Mini-Batch

Fig. 3. FeatureBox pipeline.

Op1 Op2 Op3

Func1

Func2

Func3

(a) Function call graph

Op1 Op2 Op3

Op4

Op5

Op6

(b) Dependency graph

Op7

Op8

Op1

Op2 Op3Op4

Op5

Op6

(c) Heterogeneous Scheduling

Op7

Op8

Layer 1 Layer 2 Layer 3 Layer 4

GPU

CPU

H2D

Fig. 4. An example for the heterogeneous operator scheduling.

The workflow in Figure 3 has two major tracks: – extract
features from input views and – reading basic features. A view
is a collection of raw data logs from one source, e.g., user
purchase history. CTR prediction models collect features from
multiple sources to obtain the best performance. The views are
read from the network file system HDFS. We need to clean
the views by filling null values and filtering out unrelated
instances. Afterwards, the views are joined with particular
keys such as user id, ads id, etc. We extract features from
the joined views to obtain the desired features from the input
views. Then, these features are merged with the basic features,
read in a parallel path. We provide a detailed illustration for
these operations as follows:

Read views and basic features. The views and basic features
are streamed from the distributed file system. The features are
organized in a column-wise manner so that we only need to
read the required features.

Clean views. Views contain null values and semi-structured
data, e.g., JSON format [23]. At the view cleaning stage, we
fill the null values and extract required fields from the semi-
structured data. Following the cleaning, all columns have non-
empty and simple type (as integer, float, or string) fields. Note
that the resulting views contain all the logged instances. For
an application, it may not need to include all instances, e.g., an
application for young people. A custom filter can be applied
to filter out unrelated instances of the current application.

Join views. We now have one structured table for each view.
Data from different views are concatenated by joining their
keys, e.g., user id, ad id, etc. We recall that the join step
combines multiple views into a single structured table.

Extract features. Every time CTR model engineers propose
a new feature, an operator that computes the new feature
extraction on the structured table is created. A collection of
those operators are executed in the feature extraction stage.
The FeatureBox framework figures out the dependencies of
operators and schedules the execution of the operators.

Merge features. The extracted features are further merged
with the basic features read from HDFS. The merging is
also realized by a join operation on the instance id, which

is a unique value generated when an instance is logged.
Subsequent to the merging, a mini-batch of training data is
generated and is fed to the neural network for the training.

IV. HETEROGENEOUS OPERATOR SCHEDULING

The stages discussed above are represented as operators
in the FeatureBox pipeline. Note that those operators are
heterogeneous: Some operators are network I/O intensive,
e.g., read views and read basic features; some operators are
computation-intensive, e.g., clean views and extract features;
and the remaining operators with joining, e.g., join views and
merge features, rely on heavy memory consumption for large
table joins (which corresponds to a large dictionary lookup).
Therefore, we introduce a heterogeneous operator scheduler
that manages the operator execution on both CPUs and GPUs.

Scheduling. Figure 4 shows an example for the heterogeneous
operator scheduling algorithm. We first present a function
call graph for operators in Figure 4(a). Three operators and
three major functions are displayed in the example. Op1 calls
Func3; Op2 calls Func1 and Func3; and Op3 calls Func2 and
Func3, where Func1 and Func2 are pre-processing calls, and
Func3 is a post-processing call. We make a fine granularity
pipeline so that the initialing overhead of the pipeline is
minimized. The fine-granularity is obtained by viewing each
function call as a separate operator. Then, we obtain 5 more
operators: Op4 is a call for Func1; Op5 is a call for Func2;
Op6, Op7, and Op8 are the Func3 calls from Op1, Op2, and
Op3, respectively. Their dependency graph is illustrated in
Figure 4(b). Now we have a directed acyclic graph (DAG)
for the operators. As shown in Figure 4(c), we perform a
topological sort on the dependency graph, assign the operators
with no dependencies (root operators) to the first layer, and put
the remaining operators to the corresponding layer according
to their depth from the root operators. With this layer-wise
partition, we observe that the operators in the same layer do
not have any execution dependency. We issue the operators
in the same layer together and perform a synchronization at
the end of each layer to ensure the execution dependency.
We prefer to execute operators on GPUs unless an operator
requires a significant memory footprint that does not fit in the

GPU memory. For instance, Op5 (Func2) in Figure 4 is a word
embedding table look up operation that requires a considerable
amount of memory. We assign this operation to CPU workers
and move its results from the CPU main memory to GPUs as
a host-to-device (H2D) CUDA call.

Inner-GPU operator launching. After the layer-wise DAG
operator scheduling, we have determined the execution device
for each operator and the synchronization barriers. However,
CUDA kernel launching is has a noticeable overhead. We
report the CUDA kernel launch overhead in Table I.

TABLE I
THE KERNEL LAUNCHING OVERHEAD WITH AN EMPTY KERNEL ON

NVIDIA TESLA V100-SXM2-32GB.

#Launches 1 10 100 1,000 10,000
Time (us) 4 35 360 3,619 34,515

The test is performed on an Nvidia Tesla V100-SXM2-
32GB GPU for an empty kernel with 5 pointer-type arguments.
The CUDA driver version is 10.2. The average launching time
for a kernel is around 3.5 us. Since we have fine-granularity
operators, we have to rapidly launch CUDA kernels to execute
the large number of operators. In order to eliminate the
launching overhead, we rewrite the operator kernel as a CUDA
device function for each operator in the same layer and create
a meta-kernel that sequentially executes the operator device
functions in a runtime-compilation manner. The overhead of
the meta-kernel generation is disregarded—we only need to
create this meta-kernel for each layer once as a pre-processing
of the training since we determine the operator execution order
before the actual training phase and keep the scheduling fixed.
With the generated meta-kernels, we only need to launch one
kernel for each layer.

V. GPU MEMORY MANAGEMENT

Feature extraction operators usually need to cope with
strings of varying length, e.g., query keywords and ads titles.
The execution of the operator commonly dynamically allocates
memory to process the strings. For example, splitting a string
with a delimiter needs to allocate an array to store the result of
the splitting operation. We propose a light-weight block-level
GPU memory pool to accelerate this dynamic allocation.

Figure 5 presents a visual illustration for our proposed
block-level GPU memory pool. The Thread Offsets de-
notes an array that stores the pointers to the dynamically
allocated memory in the GPU memory pool. The memory in
the GPU memory pool is pre-allocated in the GPU global
memory. For each block, the allocated memory is aligned in
128 bytes for a cache-friendly execution.

Dynamic GPU memory allocation. Algorithm 1 describes
the workflow of the in-kernel dynamic memory allocation. We

Block 1 Block 2 ...

...

... Block i Idle

Idle ...

v1 v2 ...

...

... vN Idle

x1 x2 ... xN

Block i

128 Bytes

GPU Memory Pool

Thrread Offssets

Fig. 5. A visual illustration for the GPU memory pool architecture.

maintain a global variable idle memory head that stores the
pointer of the head address of our pre-allocated GPU memory
pool. We assume each GPU thread in a block has computed
their required allocation size sizei. We first compute an in-
block parallel prefix sum on size1..N to obtain the prefix sum
prefix1..N , where N is the number of threads in a block. The
prefix sum is used to compute the total size of the requested
memory. In addition, we can easily compute the thread offsets
by adding the prefix sum to the head of the allocated memory
address. After that, we let one thread in the block, e.g.,
thread 1, to apply the memory for the entire block—the total
size is prefixN . The memory allocation is implemented by an
atomic add operation. Line 1 calls the CUDA atomic add that
adds prefixN to idle memory head and returns the old value
of idle memory head to address in an atomic fashion—no
data race within this operation. Once the requested memory is
allocated for the block, we increment the idle memory head
pointer in the memory pool. We finalize the allocation by
letting all threads in the block compute their corresponding
offsets by adding the prefix sum to the allocated address.
The memory allocation is called inside the meta-kernel that
we generated in the operator scheduling. The entire allocation
process has very little overhead costs—it does not require any
inter-block synchronization or any kernel launches.

Algorithm 1 In-Kernel Dynamic Memory Allocation
Input: allocation memory size for the ith thread, sizei; global
memory pool head pointer, idle memory head;
Output: thread offsets, offsetsi;

1: prefix1..N ← parallel prefix sum(size1..N)
2: address← atomic add(idle memory head, prefixN)
3: for each thread i in the current block concurrently do
4: offsetsi ← address + prefixi − prefix1
5: end for

TABLE II
END-TO-END TRAINING OF MAPREDUCE FEATURE EXTRACTION WITH HIERARCHICAL GPU PARAMETER SERVER AND FEATUREBOX.

Application A Application B
#Instances ∼ 1× 109 ∼ 2× 109

Log Size ∼15 TB ∼25 TB
Framework MapReduce + GPU FeatureBox MapReduce + GPU FeatureBox
#Machines 20 CPU + 1 GPU 1 GPU 30 CPU + 2 GPU 2 GPU
Execution Time 18h 3.5h 27h 2.65h
Speedup - 5.14X - 10.19X
Intermediate I/O Saving - ∼50 TB - ∼100 TB

Reset GPU memory pool. Our light-weight memory allo-
cation strategy only maintains a pointer on a pre-allocated
continuous global memory. However, the single-pointer design
does not support memory freeing. We have to maintain an ad-
ditional collection of freed memory and allocate the requested
memory chunks from this collection—the maintenance of this
additional data structure leads to significant memory allocation
overhead. We observe that our operators are in fine-granularity
and are scheduled layer by layer. Therefore, we can assume
that the total required memory for dynamic allocations fits
the GPU memory. We perform the memory release in a batch
fashion: the memory pool is reset after each meta-kernel. The
reset can be done in a constant time—we only need to set
idle memory head to the original allocated memory address
for the memory pool so that the allocation request in the meta-
kernel for the following layer gets the allocation from the
beginning of the memory pool.

VI. EXPERIMENTAL EVALUATION

In this section, we investigate the effectiveness of our
proposed framework FeatureBox through a set of numerical
experiments. Specifically, the experiments are targeted to ad-
dress the following questions:

• How is the end-to-end training time of FeatureBox com-
pared with the previous MapReduce solution?

• How much intermediate I/O is saved by the pipelining
architecture?

• What is the performance of FeatureBox in the feature
extraction task?

Systems. The MapReduce feature extraction baseline is our
previous in-production solution to extract features for the
training tasks. It runs in an MPI cluster with CPU-only nodes
in a data center. Commonly, a feature extraction job requires
20 to 30 nodes. Each node is equipped with server-grade
CPUs (∼100 threads). The training part is executed on GPU
nodes. Each GPU node has 8 cutting-edge 32 GB HBM GPUs,
∼1 TB main memory, ∼20 TB RAID-0 NVMe SSDs, and a
100 Gb RDMA network adaptor. The training framework is
the hierarchical GPU parameter server. All nodes are inter-
connected through a high-speed Ethernet switch.

Models. We use CTR prediction models on two real-world
online advertising applications. The neural network backbones
of both models follow the design in Figure 2. The major
difference between the two models is the number of input
features. Both models have more than ∼10 TB parameters.
We collect real user click history logs as the training dataset.

A. End-to-End Training

We report Table II specifications about the training data and
the end-to-end training comparison between our proposed Fea-
tureBox and the MapReduce feature extraction with hierarchi-
cal GPU parameter server training as a baseline. Both training
datasets contain billions of instances. The size of the logs is
∼15 TB for application A, and ∼25 TB for application B.
The end-to-end training time includes the features extraction
from the log time and the model training time. FeatureBox
uses 1 GPU server for application A and 2 GPU servers for
application B. In addition to the GPU servers, the baseline so-
lution also employs 20/30 CPU-only servers to perform feature
extraction. The baseline solution first extracts features using
MapReduce, saves the features as training data in HDFS, and
streams the generated training data to the GPU servers to train
the model. On the other hand, FeatureBox processes the data
in a pipeline fashion: features are extracted on GPU servers
and then are immediately fed to the training framework on the
same GPU server. For application A, FeatureBox only takes
3.5 hours to finish the feature extraction and the training while
the baseline solution requires 18 hours—with fewer number of
machines, FeatureBox has a 5.14X speedup compared to the
baseline. Meanwhile, Application B presents a bigger volume
of log instances. Hence, we use two GPU servers to perform
the training. We can observe a larger gap between FeatureBox
and the baseline when the data size scales up: FeatureBox
outperforms the baseline with a 10.19X speedup. One of the
main reasons of the speedup is that FeatureBox eliminates the
huge intermediate I/O from the MapReduce framework. We
save ∼50-100 TB intermediate I/O while using FeatureBox.

B. Feature Extraction

Although the improvement of FeatureBox in the end-to-end
training time mainly benefits from the pipeline architecture, we
also investigate the feature extraction performance to confirm

that our proposed GPU feature extraction framework is a better
alternative to the baseline MapReduce solution.

Pre-Process Extract Feature Total
0

1000

2000

3000

4000

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

MapReduce

FeatureBox

Fig. 6. Feature extraction time of MapReduce and FeatureBox.

We report, in Figure 6, the time to extract features from
10, 000 log instances of Application B. MapReduce runs on 30
CPU-only servers and FeatureBox runs on 2 GPU servers. The
pre-processing time includes the stages to prepare the data for
the feature extraction, such as read, clean, and join views. The
pre-processing time of both methods are comparable because
the executed operations are mostly memory and network I/O.
Regarding the time to extract features, FeatureBox is more
than 3 times faster than MapReduce. FeatureBox only takes
around half of the time to extract the features than the baseline.

C. Discussion

Based on these results, we can answer the questions that
drive the experiments: The end-to-end training time of Fea-
tureBox is 5-10 times faster than the baseline. Due to the
pipeline design, FeatureBox saves us 50-100 TB intermediate
I/O. For feature extraction only tasks, FeatureBox on 2 GPU
servers is 2X faster than MapReduce on 30 CPU-only servers.

VII. CONCLUSIONS

In this paper, we introduce FeatureBox, a novel end-to-
end training framework that pipelines the feature extraction
and the training on GPU servers to save the intermediate I/O
of the feature extraction. We rewrite computation-intensive
feature extraction operators as GPU operators and leave the
memory-intensive operator on CPUs. We introduce a layer-
wise operator scheduling algorithm to schedule these hetero-
geneous operators. We present a light-weight GPU memory
management algorithm that supports dynamic GPU memory
allocation with minimal overhead. We experimentally evaluate
FeatureBox and compare it with the previous in-production
MapReduce feature extraction framework on two real-world
ads applications. The results show that FeatureBox is 5-10X
faster than the baseline.

REFERENCES

[1] Dhruba Borthakur. HDFS architecture guide. Hadoop apache project,
53(1-13):2, 2008.

[2] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar
Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai,
Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong, Vihan Jain,
Xiaobing Liu, and Hemal Shah. Wide & deep learning for recommender
systems. In Proceedings of the 1st Workshop on Deep Learning for
Recommender Systems, (DLRS@RecSys), pages 7–10, Boston, MA,
2016.

[3] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for
youtube recommendations. In Proceedings of the 10th ACM Conference
on Recommender Systems (RecSys), pages 191–198, Boston, MA, 2016.

[4] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data
processing on large clusters. Communications of the ACM, 51(1):107–
113, 2008.

[5] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words: Transformers for
image recognition at scale. In 9th International Conference on Learning
Representations (ICLR), Virtual Event, Austria, 2021.

[6] Benjamin Edelman, Michael Ostrovsky, and Michael Schwarz. Internet
advertising and the generalized second-price auction: Selling billions of
dollars worth of keywords. American economic review, 97(1):242–259,
2007.

[7] Miao Fan, Jiacheng Guo, Shuai Zhu, Shuo Miao, Mingming Sun, and
Ping Li. MOBIUS: towards the next generation of query-ad matching
in baidu’s sponsored search. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining
(KDD), pages 2509–2517, Anchorage, AK, 2019.

[8] Hongliang Fei, Shulong Tan, and Ping Li. Hierarchical multi-task word
embedding learning for synonym prediction. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining (KDD), pages 834–842, Anchorage, AK, 2019.

[9] Hongliang Fei, Jingyuan Zhang, Xingxuan Zhou, Junhao Zhao, Xinyang
Qi, and Ping Li. GemNN: Gating-enhanced multi-task neural networks
with feature interaction learning for CTR prediction. In Proceedings
of the 44th International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval (SIGIR), pages 2166–2171, Virtual
Event, Canada, 2021.

[10] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio.
Generative adversarial nets. In Advances in Neural Information Pro-
cessing Systems (NIPS), pages 2672–2680, Montreal, Canada, 2014.

[11] Thore Graepel, Joaquin Quiñonero Candela, Thomas Borchert, and
Ralf Herbrich. Web-scale bayesian click-through rate prediction for
sponsored search advertising in microsoft’s bing search engine. In
Proceedings of the 27th International Conference on Machine Learning
(ICML), pages 13–20, Haifa, Israel, 2010.

[12] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang
He. DeepFM: A factorization-machine based neural network for CTR
prediction. In Proceedings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence (IJCAI), pages 1725–1731, Melbourne,
Australia, 2017.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, Las Vegas, NV, 2016.

[14] Tianyu Kang, Ping Chen, John Quackenbush, and Wei Ding. A
novel deep learning model by stacking conditional restricted boltzmann
machine and deep neural network. In Proceedings of the 26th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD),
pages 1316–1324, Virtual Event, CA, 2020.

[15] Dingcheng Li, Xu Li, Jun Wang, and Ping Li. Video recommendation
with multi-gate mixture of experts soft actor critic. In Proceedings
of the 43rd International ACM SIGIR conference on research and
development in Information Retrieval (SIGIR), pages 1553–1556, Virtual
Event, China, 2020.

[16] Ping Li, Anshumali Shrivastava, Joshua L. Moore, and Arnd Christian
König. Hashing algorithms for large-scale learning. In Advances
in Neural Information Processing Systems (NIPS), pages 2672–2680,
Granada, Spain, 2011.

[17] Xijun Li, Weilin Luo, Mingxuan Yuan, Jun Wang, Jiawen Lu, Jie
Wang, Jinhu Lü, and Jia Zeng. Learning to optimize industry-scale
dynamic pickup and delivery problems. In Proceedings of the 37th IEEE
International Conference on Data Engineering (ICDE), pages 2511–
2522, Chania, Greece, 2021.

[18] Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing
Xie, and Guangzhong Sun. xdeepfm: Combining explicit and implicit
feature interactions for recommender systems. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining (KDD), pages 1754–1763, London, UK, 2018.

[19] Bin Liu, Niannan Xue, Huifeng Guo, Ruiming Tang, Stefanos Zafeiriou,
Xiuqiang He, and Zhenguo Li. Autogroup: Automatic feature grouping
for modelling explicit high-order feature interactions in CTR prediction.
In Proceedings of the 43rd International ACM SIGIR conference on
research and development in Information Retrieval (SIGIR), pages 199–
208, Virtual Event, China, 2020.

[20] Yifei Ma, Balakrishnan (Murali) Narayanaswamy, Haibin Lin, and Hao
Ding. Temporal-contextual recommendation in real-time. In Proceedings
of the 26th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD), pages 2291–2299, Virtual Event, CA, 2020.

[21] Charbel Merhej, Ryan J. Beal, Tim Matthews, and Sarvapali D. Ram-
churn. What happened next? using deep learning to value defensive
actions in football event-data. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD), pages
3394–3403, Virtual Event, Singapore, 2021.

[22] Giang Nguyen, Stefan Dlugolinsky, Martin Bobák, Viet Tran,
Álvaro López Garcı́a, Ignacio Heredia, Peter Malı́k, and Ladislav
Hluchỳ. Machine learning and deep learning frameworks and libraries
for large-scale data mining: a survey. Artificial Intelligence Review,
52(1):77–124, 2019.

[23] Felipe Pezoa, Juan L. Reutter, Fernando Suárez, Martı́n Ugarte, and
Domagoj Vrgoc. Foundations of JSON schema. In Proceedings of the
25th International Conference on World Wide Web (WWW), pages 263–
273, Montreal, Canada, 2016.

[24] Tao Qi, Fangzhao Wu, Chuhan Wu, and Yongfeng Huang. PP-Rec:
News recommendation with personalized user interest and time-aware
news popularity. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (ACL), pages 5457–
5467, Virtual Event, 2021.

[25] Yanru Qu, Han Cai, Kan Ren, Weinan Zhang, Yong Yu, Ying Wen, and
Jun Wang. Product-based neural networks for user response prediction.
In Proceedings of the 2016 IEEE 16th International Conference on Data
Mining (ICDM), pages 1149–1154, Barcelona, Spain, 2016.

[26] Ying Shan, T. Ryan Hoens, Jian Jiao, Haijing Wang, Dong Yu, and J. C.
Mao. Deep crossing: Web-scale modeling without manually crafted
combinatorial features. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD), pages 255–262, San Francisco, CA, 2016.

[27] Xiang-Rong Sheng, Liqin Zhao, Guorui Zhou, Xinyao Ding, Binding
Dai, Qiang Luo, Siran Yang, Jingshan Lv, Chi Zhang, Hongbo Deng,
and Xiaoqiang Zhu. One model to serve all: Star topology adaptive
recommender for multi-domain CTR prediction. In Proceedings of the
30th ACM International Conference on Information and Knowledge
Management (CIKM), pages 4104–4113, Virtual Event, Queensland,
Australia, 2021.

[28] Athanasios Voulodimos, Nikolaos Doulamis, Anastasios D. Doulamis,
and Eftychios Protopapadakis. Deep learning for computer vision: A
brief review. Comput. Intell. Neurosci., 2018:7068349:1–7068349:13,
2018.

[29] Jian Wei, Jianhua He, Kai Chen, Yi Zhou, and Zuoyin Tang. Collabora-
tive filtering and deep learning based recommendation system for cold
start items. Expert Systems with Applications, 69:29–39, 2017.

[30] Kilian Q. Weinberger, Anirban Dasgupta, John Langford, Alexander J.
Smola, and Josh Attenberg. Feature hashing for large scale multitask
learning. In Proceedings of the 26th Annual International Conference on
Machine Learning (ICML), pages 1113–1120, Montreal, Canada, 2009.

[31] Tan Yu, Zhipeng Jin, Jie Liu, Yi Yang, Hongliang Fei, and Ping Li. Boost
ctr prediction for new advertisements via modeling visual content. arXiv
preprint arXiv:2209.11727, 2022.

[32] Siamak Zamany, Dingcheng Li, Hongliang Fei, and Ping Li. Towards
deeper understanding of variational auto-encoders for binary collabo-
rative filtering. In Proceedings of the 2022 ACM SIGIR International

Conference on the Theory of Information Retrieval (ICTIR), pages 254–
263, Madrid, Spain, 2022.

[33] George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha
Bhamidipaty, and Carsten Eickhoff. A transformer-based framework
for multivariate time series representation learning. In Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (kDD), pages 2114–2124, Virtual Event, Singapore, 2021.

[34] Kai Zhang, Hao Qian, Qing Cui, Qi Liu, Longfei Li, Jun Zhou, Jianhui
Ma, and Enhong Chen. Multi-interactive attention network for fine-
grained feature learning in CTR prediction. In Proceedings of the
Fourteenth ACM International Conference on Web Search and Data
Mining (WSDM), pages 984–992, Virtual Event, Israel, 2021.

[35] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. Deep learning based
recommender system: A survey and new perspectives. ACM Computing
Surveys (CSUR), 52(1):1–38, 2019.

[36] Pu Zhao, Chuan Luo, Cheng Zhou, Bo Qiao, Jiale He, Liangjie Zhang,
and Qingwei Lin. RLNF: reinforcement learning based noise filtering for
click-through rate prediction. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR), pages 2268–2272, Virtual Event, Canada, 2021.

[37] Weijie Zhao, Deping Xie, Ronglai Jia, Yulei Qian, Ruiquan Ding,
Mingming Sun, and Ping Li. Distributed hierarchical GPU parameter
server for massive scale deep learning ads systems. In Proceedings of
Machine Learning and Systems 2020 (MLSys), Austin, TX, 2020.

[38] Weijie Zhao, Jingyuan Zhang, Deping Xie, Yulei Qian, Ronglai Jia, and
Ping Li. AIBox: CTR prediction model training on a single node. In
Proceedings of the 28th ACM International Conference on Information
and Knowledge Management (CIKM), pages 319–328, Beijing, China,
2019.

[39] Guorui Zhou, Xiaoqiang Zhu, Chengru Song, Ying Fan, Han Zhu, Xiao
Ma, Yanghui Yan, Junqi Jin, Han Li, and Kun Gai. Deep interest
network for click-through rate prediction. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining (KDD), pages 1059–1068, London, UK, 2018.

[40] Jieming Zhu, Jinyang Liu, Weiqi Li, Jincai Lai, Xiuqiang He, Liang
Chen, and Zibin Zheng. Ensembled CTR prediction via knowledge
distillation. In Proceedings of the 29th ACM International Conference
on Information and Knowledge Management (CIKM), pages 2941–2958,
Virtual Event, Ireland, 2020.

	Introduction
	Preliminary
	CTR Prediction Models
	Hierarchical GPU Parameter Server

	FeatureBox Overview
	Heterogeneous Operator Scheduling
	GPU Memory Management
	Experimental Evaluation
	End-to-End Training
	Feature Extraction
	Discussion

	Conclusions
	References

