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ABSTRACT
In clinical trials and other comparative studies, covariate balance is crucial for credible and efficient
assessment of treatment effects. Covariate adaptive randomization (CAR) procedures are extensively used
to reduce the likelihood of covariate imbalances occurring. In the literature, most studies have focused on
balancing of discrete covariates. Applications of CAR with continuous covariates remain rare, especially
when the interest goes beyond balancing only the first moment. In this article, we propose a family of
CAR procedures that can balance general covariate features, such as quadratic and interaction terms. Our
framework not only unifies many existing methods, but also introduces a much broader class of new and
useful CAR procedures. We show that the proposed procedures have superior balancing properties; in
particular, the convergence rate of imbalance vectors is OP(nε) for any ε > 0 if all of the moments are
finite for the covariate features, relative to OP(

√
n) under complete randomization, where n is the sample

size. Both the resulting convergence rate and its proof are novel. These favorable balancing properties
lead to increased precision of treatment effect estimation in the presence of nonlinear covariate effects.
The framework is applied to balance covariate means and covariance matrices simultaneously. Simulation
and empirical studies demonstrate the excellent and robust performance of the proposed procedures.
Supplementary materials for this article are available online.
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1. Introduction

Balancing of baseline covariates is crucial in clinical trials and
other comparative studies, such as online A/B tests and eco-
nomic field experiments. The main purposes are to enhance
the credibility of trial results and to increase the efficiency
of treatment effect estimation. Covariate adaptive randomiza-
tion (CAR) procedures have often been used to achieve these
goals (McEntegart 2003; Taves 2010; Lin, Zhu, and Su 2015).
Many such procedures have been proposed to balance treatment
assignments within strata and over covariate margins, provided
that the covariates under consideration are discrete (categorical
with two or more levels) or have been discretized (Pocock and
Simon 1975; Baldi Antognini and Zagoraiou 2011; Hu and
Hu 2012; Rosenberger and Lachin 2015). In contrast, studies
using CAR procedures with continuous covariates have been
comparatively rare, despite the availability of various empiri-
cal methods (some of which are reviewed below). This article
describes a unified family of CAR procedures that are appli-
cable to discrete or continuous covariates or their combina-
tions. These novel procedures are tractable and have favor-
able properties for covariate balancing and treatment effect
estimation.

In CAR procedures, balancing of continuous covariates is
achieved by minimization of prescribed imbalance measures.
The simplest and most intuitive approaches target differences in

CONTACT Feifang Hu feifang@gwu.edu Department of Statistics, George Washington University, Washington, DC.
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covariate means (Li, Zhou, and Hu 2019) or related parameters,
such as Mahalanobis distances (Qin et al. 2018; Zhou et al. 2018)
and the p-values of analysis of variance (Frane 1998). These
methods are appealing because covariate means are routinely
reported as indicators of how well baseline covariates are bal-
anced, but their limitation is that higher-order moments and
other important covariate features are neglected. Consequently,
a variety of methods have attempted to balance covariates based
on additional features, such as variance (Nishi and Takaichi
2004; Endo et al. 2006), rank (Hoehler 1987; Stigsby and Taves
2010), and certain nonparametric estimators of covariate distri-
butions (Lin and Su 2012; Ma and Hu 2013; Jiang, Ma, and Yin
2018); see Hu et al. (2014) for a comprehensive review. However,
these methods have been created for ad hoc purposes, and
their theoretical properties remain largely unknown, limiting
their applicability. Model-based approaches have also been
proposed to improve efficiency using optimal design theory
(Begg and Iglewicz 1980; Atkinson 1982; Smith 1984; Begg
and Kalish 1984; Atkinson 2002). By assuming a linear model
between the responses and covariates, Atkinson’s DA-optimal
biased coin design (Atkinson 1982) achieves a balanced allo-
cation over the covariates; in general, however, model-based
approaches may not imply balance (Rosenberger and Lachin
2015).

To assess how covariates are balanced, and thus assure
the validity of a CAR procedure, the convergence rate of the
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imbalance vectors must be described. The imbalance vectors
typically have the form of

∑n
i=1(2Ti − 1)Xi, where n is the

sample size and Ti = 1 for the treatment and Ti = 0 for
the control. When Xi is the indicator of a covariate margin
or stratum, the form reduces to marginal or within-stratum
imbalances, which have been well studied for various CAR
procedures with discrete covariates (e.g., Baldi Antognini and
Zagoraiou 2011; Hu and Hu 2012; Ma, Hu, and Zhang 2015;
Rosenberger and Lachin 2015). The best available convergence
rate of the imbalance vectors is OP(1), relative to OP(

√
n)

under complete randomization (Hu and Hu 2012; Ma, Hu,
and Zhang 2015). Recently, OP(1) rates have been obtained
under certain scenarios with continuous covariate vectors Xi
(Qin et al. 2018; Li, Zhou, and Hu 2019). To ensure that
the Markov chains induced by the imbalance vectors are irre-
ducible (Meyn and Tweedie 2009), these studies made strong
implicit assumptions about the covariates; for example, that
the multivariate density functions were positive everywhere.
However, suppose the interest is to consider a more general
form of imbalance vector,

∑n
i=1(2Ti − 1)φ(Xi), where φ(Xi)

contains additional covariate features or combinations of both
discrete and continuous covariates. In such cases, the irre-
ducibility requirement is generally not met or is at least difficult
to verify, presenting a challenge to the balancing of covari-
ates beyond the first moment. However, we find that we can
obtain a slightly weaker conclusion (but making almost no
difference from a practical point of view) using only moment
conditions: the convergence rate of the imbalance vectors is
OP(nε) for any ε > 0 if all of the moments of φ(Xi) are
finite.

It is generally accepted that more balanced allocation over
covariates is associated with higher statistical efficiency. This
assertion has been confirmed for CAR procedures with discrete
covariates by several recent works (Shao, Yu, and Zhong 2010;
Ma, Hu, and Zhang 2015; Bugni, Canay, and Shaikh 2018; Ma,
Tu, and Liu 2020b). Moreover, when a balance of continuous
covariates is pursued, and only the first-order linear covari-
ate effect is assumed to be present, Ma et al. (2020a) showed
that the balancing of covariate means can increase the preci-
sion of treatment effect estimation. Any convergence rate of
oP(

√
n) for the imbalance vector

∑n
i=1(2Ti − 1)Xi suffices to

guarantee optimal precision under certain assumptions. How-
ever, nonlinear covariate effects are common in many appli-
cations. From the statistical inference point of view, it is of
interest to consider the balancing of covariates beyond the first
moment. To ground our discussion, we examine a random-
ized clinical trial of depression (Keller et al. 2000). A post
hoc analysis of the trial data clearly demonstrates a nonlin-
ear quadratic age effect, and suggests that covariate balancing
for these data would ideally address the second moment and
other nonlinear features of the covariates (see Section 6 for
details). A favorable convergence rate of the imbalance vectors,∑n

i=1(2Ti − 1)φ(Xi), is essential to achieve a more accurately
estimated treatment effect in the presence of nonlinear covariate
effects.

In this article, we propose a family of CAR procedures
to improve the balancing of general covariate features. The
proposed procedures use an adaptive randomization scheme
to sequentially minimize the imbalance measure associated

with the feature map φ(Xi). This framework unifies many
recently proposed methods and, more importantly, can gen-
erate a broader range of CAR procedures because of its flex-
ibility in defining various feature maps φ(Xi). Based on this
framework, we develop a new CAR procedure that can bal-
ance covariate means and covariance matrices between treat-
ments. Moreover, we obtain the convergence rate of covari-
ate imbalance vectors for the proposed procedures with finite-
dimensional feature maps φ(Xi). The proof relies only on
moment conditions, without requiring irreducibility for the
Markov chain induced by the imbalance vector. Both the con-
vergence rate results and the proof techniques are new to the
discipline of CAR. In addition, under further assumptions
that ensure that the Markov chain is irreducible, stronger and
more complete results can be obtained. Finally, under both an
additive treatment effect model and a more general outcome
model, we derive the asymptotic behaviors of the difference-
in-means estimator for the treatment effect. These asymptotic
results show that when nonlinear covariate effects are present,
the proposed procedures lead to more precise treatment effect
estimation.

The remainder of this article is organized as follows. In
Section 2, we describe the proposed procedures. In Section 3, we
present the theoretical properties. Treatment effect estimation
is discussed in Section 4. Simulation studies and a clinical trial
example are presented in Sections 5 and 6. Section 7 summarizes
the study and provides directions for future work. Technical
proofs and additional simulations are provided in the Supple-
mentary Appendix.

2. A New and Unified Family of CAR Procedures

2.1. General Framework

Suppose that n units are to be assigned to two treatment groups.
Let Ti be the assignment of the ith unit, such that Ti = 1 for
the treatment and Ti = 0 for the control. Let n1 = ∑n

i=1 Ti
and n0 = ∑n

i=1(1 − Ti) denote the numbers of treated units
and control units, respectively. Denote by Xi = (xi1, . . . , xip)T

a p-dimensional vector of baseline covariates for the ith unit.
We propose to balance general covariate features φ(Xi),

defined by a feature map φ(Xi) : Rp �→ R
q that maps Xi into

a q-dimensional feature space. Here, q is usually larger than p
so that φ(Xi) has more features than the original covariates. We
define the imbalance measure Imbn as the squared Euclidean
norm of the imbalance vector

∑n
i=1(2Ti − 1)φ(Xi),

Imbn =
∥∥∥ n∑

i=1
(2Ti − 1)φ(Xi)

∥∥∥2
. (1)

The proposed procedure to minimize the imbalance measure
Imbn is defined as follows:

(a) Randomly assign the first unit with equal probability to the
treatment or to the control.

(b) Suppose (n − 1) units have been assigned to a treatment
(n > 1) and the nth unit is to be assigned. Calculate the
“potential” imbalance measures Imb(1)

n and Imb(0)
n , corre-

sponding to Tn = 1 and Tn = 0, respectively.

https://doi.org/10.1080/01621459.2022.2102986
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(c) Assign the nth unit to the treatment with the probability

P(Tn = 1|Xn, . . . , X1, Tn−1, . . . , T1)

=
⎧⎨⎩

ρ if Imb(1)
n < Imb(0)

n ,
1 − ρ if Imb(1)

n > Imb(0)
n ,

0.5 if Imb(1)
n = Imb(0)

n ,

where 0.5 < ρ ≤ 1. Note that Imb(1)
n − Imb(0)

n =
4{∑n−1

i=1 (2Ti − 1)φ(Xi)}Tφ(Xn).
(d) Repeat the last two steps until all units are assigned.

Remark 2.1. It is suggested that larger values of the biasing
probability ρ, such as 0.85, 0.90, and 0.95, should be used when
covariates are involved (Hu and Hu 2012). The value of ρ is set to
0.90 throughout this article. In addition, more general allocation
functions could be used instead of Efron’s biased coin function
(Efron 1971; Hu and Zhang 2020).

The procedure is flexible in application because various
approaches can be used to define the feature map and the corre-
sponding imbalance measure. The following are some examples
of the imbalance measures used in existing CAR procedures.

Example 2.1 (Covariate means). Defining φ(Xi) = Xi, the
imbalance measure is

Imbn =
∥∥∥ n∑

i=1
(2Ti − 1)Xi

∥∥∥2

=
( ∑

i:Ti=1
Xi −

∑
i:Ti=0

Xi
)T( ∑

i:Ti=1
Xi −

∑
i:Ti=0

Xi
)

.

This imbalance measure is proportional to the squared differ-
ence of the sample means, provided each treatment group has
the same number of units. The univariate case of an imbalance
measure of this type is considered in Li, Zhou, and Hu (2019),
with a restriction imposed to ensure that the two treatments are
assigned approximately equal numbers of units within a pre-
specified tolerance.

Example 2.2 (Mahalanobis distance). The Mahalanobis distance
of the covariate means has been used in the literature as an
imbalance measure (Morgan and Rubin 2012; Qin et al. 2018;
Zhou et al. 2018). Suppose the covariance matrix cov(Xi) is
known, and the eigendecomposition is cov(Xi)−1 = VDVT.
Letting φ(Xi) = D1/2VTXi, the imbalance measure is

Imbn =
∥∥∥ n∑

i=1
(2Ti − 1)D1/2VTXi

∥∥∥2

=
( ∑

i:Ti=1
Xi −

∑
i:Ti=0

Xi
)T

cov(Xi)
−1

( ∑
i:Ti=1

Xi −
∑

i:Ti=0
Xi

)
,

which is proportional to the Mahalanobis distance if each treat-
ment has the same number of units. Sequential rerandomization
and pairwise allocation can be used, as in Zhou et al. (2018) and
Qin et al. (2018), respectively, to ensure that the two treatments
are each assigned the same number of units.

Example 2.3 (Discrete covariates). Hu and Hu (2012) considered
an imbalance measure that simultaneously accounts for over-
all, marginal, and within-stratum imbalances, denoted by Dn,
Dn(l; k∗

l ), and Dn(k∗
1, . . . , k∗

p), respectively. Let l denote the lth
covariate within a subject containing p covariates. The imbal-
ance measure in Hu and Hu (2012)

Imbn = woD2
n +

p∑
l=1

wm,l{Dn(l; k∗
l )}2 + ws{Dn(k∗

1, . . . , k∗
p)}2

can be obtained by adopting the following feature map φ(Xi) for
discrete covariates Xi,

φ = (
√

wo, . . . ,
√

wm,lδ(l;k∗
l ), . . .︸ ︷︷ ︸∑

ml marginal terms

, . . . ,
√

wsδ(k∗
1 ,...,k∗

p), . . .︸ ︷︷ ︸∏
ml within-stratum terms

)T,

where δ(l;k∗
l ) is the indication function for the lth covariate

belonging to the margin (l; k∗
l ), and δ(k∗

1 ,...,k∗
p) is the indication

function for a covariate belonging to the stratum (k∗
1, . . . , k∗

p),
1 ≤ l ≤ p and 1 ≤ k∗

l ≤ ml. wo, wm,l, and ws are non-
negative weights applied to the overall, marginal, and within-
stratum imbalances, respectively. By choosing different weights,
the method of Hu and Hu (2012) can include several important
CAR procedures as special cases, such as minimization (Pocock
and Simon 1975), if wo = ws = 0, and stratified biased coin
design (Shao, Yu, and Zhong 2010), if wo = wm,l = 0.

2.2. Balancing Covariate Means and Covariance Matrices

Suppose the covariate sample mean and the covariance matrix
are X̄a = ∑

i:Ti=a Xi/na and Sa = ∑
i:Ti=a XiXT

i /na, respec-
tively, under the treatment (a = 1) and control (a = 0), and we
intend to minimize

w1||X̄1 − X̄0||2 + w2||S1 − S0||2F, (2)

where ||·||F denotes the Frobenius norm. w1 and w2 are nonneg-
ative weights applied to the mean and covariance imbalances,
respectively. To reduce the imbalance measure presented in (2),
we next introduce a new procedure, termed COV, belonging
to the CAR family proposed in Section 2.1. We observe that
the quantity in (2) is equal to w1(X̄1 − X̄0)

T(X̄1 − X̄0) +
w2vec (S1 − S0)

T vec (S1 − S0) , where vec(·) converts a matrix
into a column vector.

The COV Procedure: A CAR procedure of the form proposed in
Section 2.1 with its imbalance measure defined by the feature
map,

φ(Xi) = (
√

w0,
√

w1XT
i ,

√
w2vec(XiXT

i )T)T, w0, w1, w2 ≥ 0.

Here, we consider an imbalance measure designed to balance
means and covariance matrices simultaneously. In contrast to
imbalance measures with potentially even higher-dimensional
feature maps, COV focuses on the first two moments of the
covariates because, in many applications, the quadratic effects
and two-factor interactions are more relevant than higher-order
effects. The weight w0 and the constant function with a value
of 1 are added into the feature map to control the overall dif-
ference

∑n
i=1(2Ti − 1) = n1 − n0. By this approach, we can

directly control the overall difference via sequential allocation
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without requiring pairwise allocation or imposing additional
restrictions on the randomization.

There is a tradeoff between the mean and covariance imbal-
ances in the imbalance measure. A larger weight placed on
the mean imbalance will increase its role in determining the
allocation of the next unit, and vice versa. For the p-dimensional
covariate Xi, there are p2 terms in the covariance matrix and
only p terms in the mean vector; imposing equal weights will
cause the imbalance measure to be dominated by the covari-
ance imbalances. Unless otherwise stated, our simulations use
w1/w2 = p to make the magnitudes of the mean and covariance
imbalances more comparable.

Remark 2.2. If w1 > 0 and w0 = w2 = 0, the COV procedure
reduces to a variant of the method of Qin et al. (2018), which
allocates units sequentially if the covariates are available and
standardized prior to randomization. Although it can effectively
minimize the covariate mean imbalance, this method may incur
unsatisfactorily large covariance matrix imbalances. In contrast,
the unreduced COV procedure trades off some imbalance in
covariate means to address covariance matrix imbalances and
improve overall covariate balance.

Remark 2.3. Suppose the cross-product terms in the covariance
matrix are of no interest. For example, if the interaction effects
of the covariates are known to be weak and can therefore be
ignored, then variances of each covariate can be balanced with-
out consideration of their correlations. In such cases, the COV
imbalance measure reduces to a form similar to that of Nishi
and Takaichi (2004). However, the proposed procedure is more
general and adds supporting theoretical justifications.

2.3. Extension to Kernelized Imbalance Measure

So far, all of the discussed examples have constructed feature
maps φ(Xi) explicitly. Using the “kernel trick” in machine learn-
ing, we can define the imbalance measure using a kernel func-
tion k(·, ·) alone and construct feature maps implicitly. Defining
k(Xi, Xj) = φ(Xi)Tφ(Xj), the imbalance measure (1) can be
rewritten as

Imbn =
∑

i,j
(2Ti − 1)(2Tj − 1)k(Xi, Xj),

where i and j range from 1 to n. This form can be applied with
a wide variety of machine learning kernels, such as polynomial,
spline, and ANOVA kernels (Hofmann, Schölkopf, and Smola
2008), to constitute a broad family of new CAR procedures.
However, these methods may be less intuitive to interpret than
cases with user-specified feature maps. We emphasize that the
kernel method presented here is distinct from some previous
CAR procedures that have used related kernel smoothing tech-
niques, such as kernel density estimation, that can apply the
same kernel functions (Ma and Hu 2013; Jiang, Ma, and Yin
2018).

In this article, we adopt the Gaussian kernel because it is
commonly used and has favorable properties; for example, it
has been shown to be a universal and characteristic kernel
(Sriperumbudur, Fukumizu, and Lanckriet 2011).

The KER Procedure: A CAR procedure of the form proposed in
Section 2.1 with its imbalance measure defined by the Gaussian
kernel function,

k(Xi, Xj) = exp

(
−||Xi − Xj||2

2σ 2

)
.

The explicit form of the feature map, φ(Xi), corresponding to
the Gaussian kernel can be derived as follows (Steinwart, Hush,
and Scovel 2006). Assuming Xi ∈ R

1 and letting σ 2 = 1/2 for
convenience, the basis functions of the feature map are given by

φ(Xi) = exp (−X2
i )

(
1,

√
2
1!Xi,

√
22

2! X2
i , . . .

)
.

For the general case Xi ∈ R
p, the basis functions are the tensor

products of the basis functions given above. In particular, the
first basis function of the Gaussian kernel is exp(−||Xi||2).

Remark 2.4. A positive definite kernel function k(·, ·) defines a
reproducing kernel Hilbert space (RKHS) H, with inner prod-
uct 〈·, ·〉H and norm || · ||H (Aronszajn 1950). The proposed
imbalance measure is the squared norm of the imbalance vec-
tor,

∑n
i=1(2Ti − 1)k(Xi, ·), in the RKHS H, giving Imbn =

|| ∑n
i=1(2Ti − 1)k(Xi, ·)||2H. Therefore, the proposed CAR pro-

cedure balances the covariates in a kernel-induced RKHS.

Remark 2.5. The imbalance measure defined by a characteristic
kernel, such as the Gaussian kernel, is closely associated with
the concept of maximum mean discrepancy (MMD), which is a
probability distribution metric based on distances between ker-
nel mean embeddings (Gretton et al. 2008; Muandet et al. 2016).
Under equal sample size, Imbn is proportional to the square
of an empirical estimate of MMD (Gretton et al. 2008, p. 6).
This observation offers another interpretation of the proposed
CAR procedure (with a characteristic kernel): it attempts to
improve the overall distributional similarity of the covariates by
sequentially minimizing a probability distribution metric (the
MMD) between different treatments.

3. Theoretical Properties

3.1. General Results

Consider the proposed CAR procedure with the finite-
dimensional feature map, φ(X) = (φ1(X), . . . , φq(X))T : Rp �→
R

q. To obtain the convergence rate of the imbalance vector,
�n = ∑n

i=1(2Ti − 1)φ(Xi), we require the following assump-
tions:

Assumption 1. The covariates {Xi = (xi1, . . . , xip)T}n
i=1 are

independent copies of X.

Assumption 2. The feature map φ(X) satisfies that E{||φ(X)||γ }
is finite for a given γ > 2.

Assumption 1 ensures that {�n} is a Markov chain on R
q

under the proposed CAR procedure. To see this, note that
�n+1 = �n − 	n+1, with 	n+1 = (−1)Tn+1φ(Xn+1). Given
�n, 	n+1 is conditionally independent of {�1, . . . , �n−1}, and
thus �n+1 is also conditionally independent of {�1, . . . , �n−1}.
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Assumption 2 concerns only the moment condition of the
covariate features. Here, we do not assume any special prop-
erties of the Markov chain {�n}, such as irreducibility and
aperiodicity.

Theorem 3.1. Suppose Assumptions 1 and 2 hold. Then
E(||�n||2) = O(n

1
γ−1 ) and so, �n = OP(n

1
2(γ−1) ) = oP(

√
n).

In particular, if E{||φ(X)||γ } is finite for all γ > 2, then �n =
OP(nε) for any ε > 0.

The results imply that
∑n

i=1(2Ti − 1)φj(Xi) is also
OP(n

1
2(γ−1) ) for each j = 1, . . . , q. Note that the convergence rate

is OP(n1/6) if φ(X) has a finite fourth moment. This convergence
rate is better than the rate of OP(

√
n) under complete random-

ization and many existing CAR procedures (e.g., Atkinson 1982;
Jiang, Ma, and Yin 2018). Furthermore, the rate is OP(nε) for any
ε > 0 if all of the moments of φ(X) are finite. This condition
is satisfied, for example, when φ(X) is bounded or comprises
polynomials of normally distributed covariates.

Remark 3.1. The rate of OP(nε) for any ε > 0 is not necessarily
sharp. The rate of OP(1) is obtained for some important special
cases of the proposed procedures (Hu and Hu 2012; Qin et al.
2018; Li, Zhou, and Hu 2019). However, these results require
additional assumptions (e.g., that φ(X) is discrete or has a con-
tinuous positive density) to ensure that the Markov chain {�n}
is irreducible. A general condition to ensure the irreducibility is
presented in Section 3.2 for the case of continuous covariates.
However, these assumptions may fail for the COV procedure
with w0 > 0, or more generally, when the procedure is intended
to balance mixed (both discrete and continuous) covariate pro-
files; see Section B.4 in the Supplementary Appendix for an
example. In contrast, the results presented in Theorem 3.1 only
require moment conditions and are thus more general and
applicable to both discrete and continuous covariates and their
combinations. Although the derived rate is slightly slower than
OP(1), the difference is negligible for sample sizes typically
encountered in practice. For example, Phase III clinical trials
often enroll hundreds of patients.

The following corollary is an immediate application of The-
orem 3.1 to the COV procedure.

Corollary 3.2. Suppose Assumptions 1 and 2 hold for
the covariates {Xi}n

i=1 and the feature map φ(Xi) =
(
√

w0,
√

w1XT
i ,

√
w2vec(XiXT

i )T)T with w0 > 0, w1 > 0,
and w2 > 0. Then �n = oP(

√
n). In particular,

(i)
∑n

i=1(2Ti − 1) = n1 − n0 = oP(
√

n);
(ii)

∑n
i=1(2Ti − 1)xij = oP(

√
n) for any j = 1, . . . , p;

(iii)
∑n

i=1(2Ti − 1)xijxij′ = oP(
√

n) for any j, j′ = 1, . . . , p.

Furthermore, if E(|xij|γ ) < ∞ for all γ > 2 and j = 1, . . . , p,
then the above statements still hold with oP(

√
n) replaced by

OP(nε) for any ε > 0,.

The conclusions in Theorem 3.1 require that the feature
map φ(X) is finite-dimensional. Achieving similar results for
infinite-dimensional φ(X) needs an additional assumption,

which, roughly speaking, requires that the intrinsic dimension
of φ(X) is finite.

Assumption 3. The feature map φ(X) = (φ1(X), φ2(X), . . .)T

satisfies requirements that the infinite-dimensional matrix 
 =
E{φ(X)φ(X)T} = (

E{φi(X)φj(X)} : i, j = 1, 2, . . .
)

has only
a finite number of nonzero eigenvalues λ1, . . . , λd′ , and that
there exists an orthogonal matrix U such that U
UT =
diag(λ1, . . . , λd′ , 0, . . .).

Theorem 3.3. Suppose Assumptions 1–3 hold. Then
E(||�n||2) = O(n

1
γ−1 ) and so, �n = OP(n

1
2(γ−1) ) = oP(

√
n).

Remark 3.2. The above results may not hold for truly infinite-
dimensional feature maps, such as those using the Gaussian
kernel in the KER procedure. The proofs of Theorems 3.1 and
3.3 do not follow through because the key inequality (A.2) in
the Supplementary Appendix may not be true for the infinite-
dimensional case. The simulation results in Table 1 and Table B.1
in the Supplementary Appendix indicate that the first few
bases are balanced quite well under KER, but the imbalances
on later bases have a clear increasing trend with sample size.
However, the imbalances are still smaller than those obtained
under complete randomization. These observations illustrate
the challenges of balancing high-dimensional covariate features
in the design stage. Further investigation will be needed to
accurately describe the stochastic behavior of the imbalance
vectors induced by infinite-dimensional feature maps, which is
important to fully characterize the balancing properties of the
proposed procedures.

3.2. Further Results

To consider treatment effect estimation under a general out-
come model in Section 4.2, we provide further results on the
properties of the proposed procedure. These results require the
following assumption that, together with Assumptions 1 and 2,
ensure that {�n} is ψ-irreducible (Meyn and Tweedie 2009):

Assumption 4. Suppose that the distribution of φ(X) is φ , and
there is an nc and a constant 1 ≥ cν > 0 such that


nc∗
φ (A) ≥ cν

∫
A

ν(y)dy for any Borel set A,

where ν(y) is a density function with infy∈O ν(y) > 0 for an
open set O, and k∗

φ is the kth convolution of φ .

Theorem 3.4. Suppose Assumptions 1, 2 (with γ = 2) and 4
hold. Then {�n} is a positive Harris recurrent Markov chain and
�n = OP(1).

Theorem 3.5. Suppose Assumptions 1, 2 (with γ > 5) and 4
hold. Assume that m(X) is a function of X with E{|m(X)|} < ∞.
Then

1
n

n∑
i=1

(2Ti − 1)m(Xi)
P→ 0.

https://doi.org/10.1080/01621459.2022.2102986
https://doi.org/10.1080/01621459.2022.2102986
https://doi.org/10.1080/01621459.2022.2102986
https://doi.org/10.1080/01621459.2022.2102986
https://doi.org/10.1080/01621459.2022.2102986
https://doi.org/10.1080/01621459.2022.2102986
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Table 1. Standard deviations of imbalance vectors under various randomization procedures.

Randomization n
∑

(2Ti − 1)
∑

(2Ti − 1)xi,1
∑

(2Ti − 1)x2
i,1

∑
(2Ti − 1)e−||Xi ||2

p = 1 p = 2 p = 4 p = 1 p = 2 p = 4 p = 1 p = 2 p = 4 p = 1 p = 2 p = 4

CR 200 14.22 13.95 14.13 13.84 14.38 14.13 24.75 24.39 24.75 9.54 6.28 2.81
500 22.11 22.77 22.53 22.24 22.20 22.46 38.47 39.11 39.24 14.99 10.18 4.55
800 28.39 28.57 27.84 28.39 27.71 28.64 48.91 48.77 49.26 18.91 12.64 5.66

2000 44.24 44.83 44.78 45.20 44.93 43.78 75.80 76.94 77.30 29.89 20.08 8.86
COV 200 14.01 14.06 14.08 1.04 1.29 1.69 24.21 24.43 24.32 9.43 6.32 2.80
(w0, w1, w2) = (0, 1, 0) 500 22.17 22.72 22.30 1.06 1.29 1.66 38.84 39.24 38.74 14.88 10.12 4.47

800 28.04 28.34 28.80 1.03 1.28 1.65 48.66 48.73 49.74 18.77 12.83 5.66
2000 43.31 44.75 44.51 1.05 1.28 1.69 75.31 78.17 77.42 29.38 20.08 8.89

COV 200 1.01 1.30 1.68 1.36 1.53 1.88 21.02 20.23 20.09 5.00 4.41 2.46
(w0, w1, w2) = (1, 1, 0) 500 1.04 1.30 1.67 1.34 1.52 1.85 32.62 32.24 32.39 7.91 6.91 3.90

800 0.97 1.27 1.69 1.34 1.52 1.85 41.12 41.46 39.88 9.82 8.72 4.79
2000 1.00 1.29 1.70 1.35 1.52 1.86 65.09 63.95 62.73 15.54 13.69 7.67

COV 200 14.51 11.41 9.00 2.04 2.20 2.58 2.91 3.95 6.09 11.01 6.71 2.92
(w0, w1, w2) = (0, p, 1) 500 22.79 18.40 14.38 2.09 2.24 2.66 2.99 3.83 6.14 17.38 10.76 4.61

800 29.03 23.08 18.01 2.10 2.15 2.63 3.00 3.97 6.16 22.09 13.68 5.83
2000 44.91 36.91 28.27 2.07 2.23 2.64 2.93 3.96 6.08 34.09 21.55 9.18

COV 200 1.47 2.32 4.28 2.29 2.35 2.65 3.01 4.02 6.08 3.75 3.57 2.03
(w0, w1, w2) = (1, p, 1) 500 1.44 2.30 4.33 2.25 2.30 2.68 3.12 4.00 6.14 5.86 5.84 3.41

800 1.49 2.34 4.34 2.30 2.28 2.66 3.04 4.03 6.21 7.39 7.29 4.36
2000 1.50 2.34 4.45 2.29 2.28 2.62 3.14 4.06 6.16 11.68 11.82 7.29

KER 200 1.56 2.58 4.94 3.26 4.55 7.06 8.84 11.19 15.31 0.79 0.78 0.70
500 1.65 2.79 6.08 3.55 5.38 9.10 10.67 14.00 20.40 0.80 0.79 0.75
800 1.66 3.00 6.77 3.74 5.69 10.29 11.79 15.56 23.72 0.79 0.80 0.76

2000 1.71 3.20 7.68 4.16 6.54 12.71 13.53 19.05 30.76 0.80 0.78 0.77

Theorem 3.6. Suppose Assumptions 1, 2 (with γ > 5) and 4
hold. Assume that m(X) is a function of X with E{m2(X)} < ∞.
Then there is a σm ≥ 0 such that

1√
n

n∑
i=1

(2Ti − 1)m(Xi)
D→ N(0, σ 2

m).

Theorems 3.5 and 3.6 provide a novel law of large numbers
and a central limit theorem for the proposed CAR procedure
under assumptions that ensure that {�n} is ψ-irreducible. In
Theorem 3.6, σ 2

m = 0 if m(X) ∈ span{φ(X)} = {βTφ(X)|β ∈
R

q}. In general, σ 2
m depends on the invariant probability mea-

sure of {�n} and may not have a closed form.

Remark 3.3. Assumption 4 is obviously satisfied if φ(X) has
a continuous positive density on an open set (nc = 1). More
generally, Assumption 4 is satisfied if the sum of a finite number
of independent copies of φ(X) has a continuous positive density
on an open set, in which case we call the distribution of φ(X)

spread out (Meyn and Tweedie 2009, p. 107). The assumption is
mild, as illustrated by the below example balancing for multiple
moments.

Example 3.1 (Balancing higher moments). Suppose that the one-
dimensional covariate X has a continuous density with the 2dth
moment being finite. To balance the first d moments of X, we
choose φ(X) = (X, X2, . . . , Xd). Let Zj = ∑d

i=1 Xj
i , j =

1, . . . , d, where X1, . . . , Xd are independent copies of X. Then
there is an open set O on which the density of (X1, . . . , Xd)
is positive and (X1, . . . , Xd) → (Z1, . . . , Zd) is a one to one
map from O to an open set Õ. Then (Z1, . . . , Zd) has a con-
tinuous positive density on Õ. That is, the dth convolution of
the distribution of φ(X) has a continuous positive density on
Õ. Hence, Assumptions 2 (with γ = 2) and 4 are satisfied. The
generalization to the multivariate case is straightforward.

4. Treatment Effect Estimation

4.1. Additive Treatment Effect

We use the Rubin potential outcomes model (Rubin 1974) to
define the treatment effect. For each unit i, denote by Yi(1) and
Yi(0) the potential outcomes under the treatment and control,
respectively. The observed outcome is Yi = TiYi(1) + (1 −
Ti)Yi(0). The treatment effect is defined as τ = E{Yi(1)} −
E{Yi(0)}. To estimate τ , we consider the estimator based on the
difference in observed sample means

τ̂ = Ȳ1 − Ȳ0 =
∑n

i=1 TiYi
n1

−
∑n

i=1(1 − Ti)Yi
n0

.

Consider the data generating model in which the treatment
effect is constant for all units,

Yi(a) = μa + βTφ(Xi) + εi, a = 0, 1, (3)

where μ1 and μ0 are the main effects of the treatment and
control, respectively, and φ(Xi) is the q-dimensional covariate
features defined previously. The random error εi is independent
and identically distributed with zero mean and a finite variance
σ 2

ε and is independent of the covariates.

Example 4.1 (First-order linear model). If φ(Xi) = Xi, model (3)
reduces to a typical linear model with only first-order covariate
effects,

Yi(a) = μa +
p∑

j=1
βjxij + εi, a = 0, 1, (4)

where βj are covariate coefficients.

Example 4.2 (Second-order linear model). Another commonly
used model, which is a special case of model (3), is a linear model
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with covariate effects up to the second-order,

Yi(a) = μa +
p∑

j=1
βjxij +

p∑
j=1

∑
j′≤j

βjj′xijxij′ + εi, a = 0, 1,(5)

where βjj′ are coefficients of the quadratic terms, if j = j′, and
the interactions, if j′ < j.

If there are approximately the same numbers of units in each
treatment, such that n1 − n0 = oP(

√
n), it is shown in the proof

of Theorem 4.1 in the Supplementary Appendix that

√
n(̂τ−τ)= 2√

n

{ n∑
i=1

(2Ti−1)βTφ(Xi)+
n∑

i=1
(2Ti−1)εi

}
+oP(1).

It can be seen that the variability of τ̂ consists of two com-
ponents, one from the covariates and one from the random
errors. Therefore, one goal of covariate balancing is to increase
estimation precision by eliminating the variability due to the
covariates. The best case is that the asymptotic variance of τ̂ is
attributable only to the random errors, that is 4σ 2

ε .

Definition 1 (Optimal precision). Given the data generating
model (3), we state that τ̂ achieves optimal precision under a
randomization procedure if

√
n(̂τ − τ)

D→ N(0, 4σ 2
ε ).

Remark 4.1. Under the first-order linear model (4), it has been
shown in the literature that optimal precision can be achieved
by a variety of CAR procedures, such as stratified biased coin
design, Pocock and Simon’s minimization, the method of Hu
and Hu (2012) for discrete covariates (Shao, Yu, and Zhong
2010; Ma, Hu, and Zhang 2015), and the method of Qin et al.
(2018) for continuous covariates (Ma et al. 2020a).

Theorem 4.1. Suppose
∑n

i=1(2Ti − 1) = oP(
√

n) and∑n
i=1(2Ti − 1)φ(Xi) = oP(

√
n) hold under the proposed

randomization procedure. Then the estimated treatment effect
τ̂ achieves optimal precision under the data generating model
(3), that is,

√
n(̂τ − τ)

D→ N(0, 4σ 2
ε ).

The assumption on the balancing of covariate features φ(Xi),
that is,

∑n
i=1(2Ti − 1)φ(Xi) = oP(

√
n), is satisfied by Theo-

rem 3.1. Also, a constant function can be added into the feature
map to ensure

∑n
i=1(2Ti − 1) = oP(

√
n). The next corollary

corresponds to the second-order linear model (5) and follows
directly from Theorem 4.1 and Corollary 3.2.

Corollary 4.2. Suppose the same assumptions hold as in Corol-
lary 3.2. Then the estimated treatment effect τ̂ achieves optimal
precision under the COV procedure with w0 > 0, w1 > 0, and
w2 > 0 and the data generating model (5), that is,

√
n(̂τ −τ)

D→
N(0, 4σ 2

ε ).

We provide a consistent estimator for σ 2
ε so that valid infer-

ence can be drawn based on Theorem 4.1. Consider the follow-
ing regression:

Yi = μ1Ti + μ0(1 − Ti) + βTφ(Xi) + εi. (6)

Let (μ̂1, μ̂0, β̂) be the ordinary-least-squares (OLS) estimator
for (μ1, μ0, β). Then, let σ̂ 2

ε be the OLS estimator for the error

variance, that is, σ̂ 2
ε = (n − q − 2)−1 ∑n

i=1 ε̂2
i , where ε̂i =

Yi − {μ̂1Ti + μ̂0(1 − Ti) + β̂Tφ(Xi)}. The following theorem
establishes the consistency of σ̂ 2

ε . The coverage properties of
the confidence intervals constructed using σ̂ 2

ε are assessed by
simulations in Section B.5 in the Supplementary Appendix.

Theorem 4.3. Suppose
∑n

i=1(2Ti − 1) = oP(
√

n) and∑n
i=1(2Ti − 1)φ(Xi) = oP(

√
n) hold under the proposed

randomization procedure. Then σ̂ 2
ε is a consistent estimator for

σ 2
ε under the data generating model (3), that is, σ̂ 2

ε

P→ σ 2
ε .

4.2. General Outcome Model

We introduce additional notation and assumptions to study
treatment effect estimation under a more general model for
potential outcomes. Denote the centered conditional expecta-
tions of potential outcomes by

ma(Xi) = E{Yi(a)|Xi} − E{Yi(a)}

and the error terms by

εia = Yi(a) − E{Yi(a)|Xi}

for a = 0, 1. We observe that Yi(a) − E{Yi(a)} = ma(Xi) + εia,
with E{ma(Xi)} = 0 and E(εia|Xi) = E(εia) = 0, a = 0, 1.

Assumption 5. {Yi(1), Yi(0), Xi}n
i=1 are independent copies

of {Y(1), Y(0), X}. Moreover, E[var{Yi(a)|Xi}] > 0 and
E{Y2

i (a)} < ∞, a = 0, 1.

The assumption E[var{Yi(a)|Xi}] > 0 is made to exclude
degenerate situations, and E{Y2

i (a)} < ∞ allows the use of cer-
tain laws of large numbers and central limit theorems, including
Theorems 3.5 and 3.6. Similar assumptions have been used for
inference under CAR-type procedures. See, for example, Bugni,
Canay, and Shaikh (2018) and Bai, Romano, and Shaikh (in
press).

Under the assumptions that ensure that {�n} is ψ-
irreducible, we prove that τ̂ is asymptotically normal. By The-
orem 3.6, we have

1√
n

n∑
i=1

(2Ti − 1)m(Xi)
D→ N(0, σ 2

m),

m(Xi) = m1(Xi) + m0(Xi)

2
,

where, with slight notation abuse, we denote by m(Xi) the
average of two centered conditional expectations of potential
outcomes and by σ 2

m ≥ 0 the asymptotic variance of m(Xi).

Theorem 4.4. Suppose Assumptions 1, 2 (with γ > 5), 4 and
5 hold. Then

√
n(̂τ − τ)

D→ N(0, σ 2), with σ 2 = 2var(εi1) +
2var(εi0) + var{m1(Xi) − m0(Xi)} + 4σ 2

m.

Note that the terms 2{var(εi1) + var(εi0)} and var{m1(Xi) −
m0(Xi)} are invariant with respect to the specific feature maps
used by the proposed CAR procedures. Then the randomization

https://doi.org/10.1080/01621459.2022.2102986
https://doi.org/10.1080/01621459.2022.2102986
https://doi.org/10.1080/01621459.2022.2102986
https://doi.org/10.1080/01621459.2022.2102986
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specific component of the asymptotic variance of τ̂ is deter-
mined by

n∑
i=1

(2Ti − 1)m(Xi) =
{ ∑

i:Ti=1
m(Xi) −

∑
i:Ti=0

m(Xi)
}

. (7)

Hence, Theorem 4.4 explicitly reveals the relationship between
the precision of the difference-in-means estimator τ̂ and the
imbalance in the conditional expectation functions.

The feature map φ(X) is ideally chosen to minimize the vari-
ability of

∑n
i=1(2Ti−1)m(Xi) for higher precision. In particular,

if we impose some restrictions on the functional form of m(X),
then φ(X) can be constructed so that m(X) ∈ span{φ(X)}.
In this case, σ 2

m = 0 and the corresponding τ̂ has a possibly
minimum asymptotic variance. In general, the functional form
of m(X) may be unknown. However, because the conditional
expectation functions are usually nonlinear, the span of the
higher q-dimensional φ(X) is more likely to contain or well
approximate m(X) than that of the original lower p-dimensional
X. These arguments further justify the need to balance general
covariate features.

Remark 4.2. The results in Theorem 4.4 provide some insights
on the use of the KER procedure when m(X) is a continuous
function, as the Gaussian kernel is universal: the basis func-
tions of the Gaussian kernel can approximate any continuous
function.

Remark 4.3. When all of the baseline covariates are available
before randomization, Kallus (2018) derived the same imbal-
ance metric as that in (7) by considering the minimax variance
among all possible allocations. Integer programming algorithms
were then used to obtain the optimal allocation. However, these
algorithms do not apply to settings in which the units enter the
experiment over a period of time, such as in sequential clinical
trials. In contrast, our proposed CAR procedures adaptively
assign the treatments and are thus more feasible for sequential
clinical trials.

Remark 4.4. Theorem 4.4 provides a basis for hypothesis testing
and constructing confidence intervals for the treatment effect if
a consistent variance estimator is available. However, compared
with the discrete case, a sample analog variance estimator is
more difficult to obtain (Bugni, Canay, and Shaikh 2018, 2019;
Ye, Yi, and Shao 2020; Ma, Tu, and Liu 2020b), because σ 2

m
does not have a closed form. Alternatively, it is likely that
bootstrap methods could be used to draw valid inference under
the proposed procedures (Shao, Yu, and Zhong 2010; Ma, Hu,
and Zhang 2015; Zhang and Zheng 2020); but this remains a
conjecture.

5. Simulation Studies

5.1. Convergence Rates of Imbalance Vectors

We first evaluate the convergence rates of imbalance vectors
under different randomization procedures, including complete
randomization (CR), the proposed COV procedures with dif-
ferent weights, and KER. The covariates Xi are simulated from
multivariate normal distributions N(0, Ip) with p = 1, 2 and

4, where Ip is the p-dimensional identity matrix. The sample
sizes are n = 200, 500, 800, and 2000. For each randomization
procedure, the imbalances at different levels are investigated,
including the differences in numbers of units

∑
(2Ti − 1) =

n1 − n0, the first- and second-moment covariate imbalances∑
(2Ti −1)xi,1 and

∑
(2Ti −1)x2

i,1, and the covariate imbalance
measured by

∑
(2Ti−1) exp(−||Xi||2). The standard deviations

of these imbalance vectors are used to evaluate the convergence
rate and are given in Table 1. Due to symmetry, only the results
of the first dimensions of the covariates, xi,1, are reported. All
of the simulations in this and subsequent sections are based on
5000 replicates. Additional simulations under different covari-
ate assumptions and comparisons with other CAR procedures
are presented in Section B.3 in the Supplementary Appendix.

Under CR, COV with w0 = 0, and KER, the imbalances∑
(2Ti − 1) = n1 − n0 become more variable as the sample size

increases. The standard deviations increase with approximately
OP(

√
n) rates under both CR and COV with w0 = 0, and

with faster rates than OP(
√

n) under KER. In contrast, under
the two COV procedures with w0 = 1, the imbalances tend to
stabilize, meaning that they do not increase as the sample size
increases. These results suggest that if the numbers of units in
each treatment need balancing, a positive weight of w0 should
be imposed.

Second, the standard deviations of
∑

(2Ti − 1)xi,1 stabilize
under all four COV procedures, regardless of whether w0 =
0. The cases in which w2 = 0 perform better than those in
which w2 > 0. This result is expected because the first two
COV procedures only balance the first moment of the covari-
ates. Under KER, the standard deviations become larger as the
sample size increases, but the rates are faster than the OP(

√
n)

rates observed under CR.
For the second-moment imbalances

∑
(2Ti − 1)x2

i,1, the
two COV procedures with w2 > 0 are the only procedures
that ensure stabilization of the standard deviations. Under both
CR and COV with w2 = 0, the standard deviations increase
with approximately OP(

√
n) rates. Under KER, the standard

deviations increase at rates faster than OP(
√

n), but they do not
stabilize. In summary, COV (w2 > 0) is the best performing
procedure for covariate balancing when taking into account
both the first and second moments.

Finally, for the imbalance measured by
∑

(2Ti − 1)

exp(−||Xi||2), the KER procedure has the smallest standard
deviations and outperforms all other methods. The standard
deviations tend to stabilize under KER as the sample size
increases. Note that exp(−||Xi||2) is the first basis function
of the Gaussian kernel. The imbalances on subsequent basis
functions are presented in Table B.1 in Section B.1 in the Sup-
plementary Appendix. In these additional simulation results, the
imbalances stabilize on the first few basis functions, but increase
with sample size for the later basis functions. See Section B.1
in the Supplementary Appendix for further discussion of these
results.

5.2. Imbalance Measures under COV

In this section, we evaluate imbalance measures based on the
first two moments under COV. We simulate the covariate Xi
again according to multivariate normal distributions N(0, Ip).

https://doi.org/10.1080/01621459.2022.2102986
https://doi.org/10.1080/01621459.2022.2102986
https://doi.org/10.1080/01621459.2022.2102986
https://doi.org/10.1080/01621459.2022.2102986
https://doi.org/10.1080/01621459.2022.2102986
https://doi.org/10.1080/01621459.2022.2102986
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Table 2. Means and standard deviations (STD) of imbalance measures based on
covariate means and covariance matrices under COV.

Randomization n n2||X̄1 − X̄0||2 n2||S1 − S0||2F
Mean STD Mean STD

CR 200 1662.05 1645.81 4869.66 4070.06
500 4002.37 4022.40 11916.09 9917.10
800 6413.39 6419.536 19248.63 15770.86

COV 200 18.36 20.52 4896.53 4114.22
(w0, w1, w2) = (1, 1, 0) 500 18.33 20.61 12563.91 10092.17

800 18.98 21.66 19747.08 15980.93
COV 200 41.93 49.01 246.93 255.44
(w0, w1, w2) = (1, p, 1) 500 41.84 48.72 246.13 257.24

800 42.52 49.26 245.03 257.36
COV 200 21.86 24.97 395.54 344.76
(w0, w1, w2) = (1, p, 1/4) 500 22.32 26.00 392.17 355.20

800 22.79 26.94 403.23 366.29

The proposed COV procedure is used to assign the units to
treatment groups.

In view of the results in Section 5.1, we set w0 = 1
to improve the similarity between the numbers of units in
each treatment. Three different sets of weights are considered,
(w0, w1, w2) = (1, 1, 0), (1, p, 1) and (1, p, 1/4). After all of
the units are assigned, the imbalances in covariate means and
covariance matrices, measured by ||X̄1 − X̄0||2 and ||S1 − S0||2F,
are recorded. CR is also applied to these simulations for com-
parison purposes. Three different sample sizes, n = 200, 500,
and 800 are used in the simulations. Table 2 shows the means
and standard deviations of n2||S1 − S0||2F and n2||X̄1 − X̄0||2
under different randomization procedures. For simplicity, only
the results of p = 2 are listed. The results of p = 1 and p = 4
have similar patterns and are therefore omitted. The histograms
of the imbalance measures are plotted in Figures B.1, B.2, and
B.3 in Section B.2 in the Supplementary Appendix.

From Table 2,the means and standard deviations of both
n2||X̄1 − X̄0||2 and n2||S1 − S0||2F are stable as the sample size
increases under COV with w2 > 0. These results hold for both
sets of weights, indicating that the inclusion of w2 > 0 is
more important than the value of w2 in controlling the con-
vergence rate. However, compared with the case with weights
(w0, w1, w2) = (1, p, 1), the procedure with (w0, w1, w2) =
(1, p, 1/4) is better for balancing means, but worse for balancing
covariance matrices because it imposes more weight on the first
moment in the overall imbalance measure.

In contrast, the other two procedures, COV with w2 = 0
and CR, do not control the covariance matrix imbalances well.
Both the means and the standard deviations of n2||S1 − S0||2F
increase as the sample size increases, growing at approximately
the same rates as OP(n). Although COV with w2 = 0 shows the
smallest imbalances of covariate means among the procedures,
its covariance matrix imbalances are similar to those for CR,
making w2 = 0 a less satisfactory choice for COV if balancing
of covariances is deemed critical.

5.3. Treatment Effect Estimation

We simulate two-dimensional covariates Xi ∼ N(0, I2) and
apply a CAR procedure to obtain the treatment assignments Ti.
The observed outcome is Yi = TiYi(1) + (1 − Ti)Yi(0). For

Table 3. Means (n×variances) of treatment effect estimates under various random-
ization procedures and models.

Randomization n Model

1 2 3 4

CR 200 1.00(12.03) 1.00(32.47) 0.99(6.94) 1.00(16.71)

500 1.00(12.16) 1.00(31.29) 1.00(6.90) 1.00(17.39)

800 1.00(11.71) 1.00(31.93) 1.00(6.82) 1.00(16.69)

COV 200 1.00(4.13) 1.01(25.97) 1.00(6.46) 1.00(9.13)

(w0, w1, w2) = (1, 1, 0) 500 1.00(4.11) 0.99(24.54) 1.00(6.57) 1.00(9.15)

800 1.00(4.08) 1.00(24.76) 1.00(6.85) 1.00(9.01)

COV 200 1.00(4.31) 1.00(5.48) 1.00(6.28) 1.00(4.68)

(w0, w1, w2) = (1, p, 1) 500 1.00(4.15) 1.00(4.54) 1.00(6.40) 1.00(4.64)

800 1.00(4.14) 1.00(4.28) 1.00(6.57) 1.00(4.59)

KER 200 1.00(4.94) 1.00(9.73) 1.01(4.08) 0.99(5.67)

500 1.00(4.45) 1.00(7.63) 0.99(4.02) 1.00(4.98)

800 1.00(4.37) 1.00(6.92) 1.00(3.91) 1.00(4.76)

a = 0, 1 and i = 1, . . . , n, the potential outcomes Yi(a), a =
0, 1, are simulated according to the following data generating
models:

Model 1: Yi(a) = μa + xi1 + xi2 + εi,
Model 2: Yi(a) = μa + xi1 + xi2 + x2

i1 + x2
i2 + xi1xi2 + εi,

Model 3: Yi(a) = μa + 2(1 + xi1 + xi2 + xi1xi2) exp(−x2
i1 −

x2
i2) + εi,

Model 4: Yi(a) = μa + xi1 + xi2 + xi1xi2 + exp(−x2
i1) +

exp(−x2
i2) + εi,

where μ1 = 1, μ0 = 0, and εi ∼ N(0, 1) is independent of the
covariates.

Model 1 represents the simplest case, in which covariate
effects are both linear and additive. In Model 2, the out-
come variable follows a second-order linear model, which con-
tains both quadratic and interaction effects of the covariates.
Model 3 includes the first four basis functions induced by the
two-dimensional Gaussian kernel, which are exp(−x2

i1 − x2
i2),

xi1 exp(−x2
i1−x2

i2), xi2 exp(−x2
i1−x2

i2) and xi1xi2 exp(−x2
i1−x2

i2),
respectively. In Model 4, the covariates exhibit additive but non-
linear effects on the outcomes, which include the first-order and
interaction effects of the covariates and the two basis functions
associated with the two-dimensional Gaussian kernel. For other
and more general model settings, such as nonadditive treatment
effects and error terms that are correlated with covariates or not
normally distributed, additional simulations are conducted in
Section B.3.3 in the Supplementary Appendix. We also present
comparisons with other CAR procedures.

To assess the estimated treatment effect τ̂ = Ȳ1 − Ȳ0, CR and
three CAR procedures are compared, including KER and two
COV procedures with different weights. The sample sizes are
n = 200, 500, and 800. Table 3 presents the means and variances
of the treatment effect estimates under different data generating
models and randomization procedures.

As seen from Table 3, the means of the treatment effect
estimates τ̂ are equal or very close to the true value, indi-
cating the asymptotic unbiasedness of τ̂ for all of the ran-
domization procedures under consideration. We then compare
the variances of these estimators as indicators of estimation
precision.

For Model 1, with only first-order covariate effects, both
COV procedures achieve optimal precision, meaning that the
variances are approximately four times the variances of the

https://doi.org/10.1080/01621459.2022.2102986
https://doi.org/10.1080/01621459.2022.2102986
https://doi.org/10.1080/01621459.2022.2102986
https://doi.org/10.1080/01621459.2022.2102986
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random errors. This finding is consistent with the theoretical
results in Section 4.1. The variances under KER are slightly
larger than those under COV because KER does not directly
balance the first-order covariate effects. For Model 2, the COV
procedures with w2 > 0 exhibit the smallest variances, closely
followed by KER. Both KER and COV with w2 > 0 have
much better performance than CR and COV with w2 = 0.
For this model, the inferior performance of COV with w2 = 0
is expected because it is only balances the first moment of the
covariates.

Model 3 includes the first few basis functions of the Gaus-
sian kernel. KER shows the minimum variances among the
three methods, and it appears that these variances are solely
attributable to the random errors. Finally, the functional form
of the covariate effects in Model 4 is continuous but does not
belong to the span of COV or KER basis functions. In this
scenario, KER and COV with w2 > 0 perform similarly well,
but CR and COV with w2 = 0 are less effective.

In summary, the performances of KER and COV with w2 > 0
are relatively robust under all of the scenarios studied, with
each having its own advantages. In contrast, although it achieves
optimal precision under the first-order linear model, COV with
w2 = 0 is generally less competitive under more complex
nonlinear models. This finding demonstrates the limitations
presented by balancing only the first moment of covariates in
randomization.

6. Clinical Trial Example

We present a clinical trial example to illustrate the covariate bal-
ance and estimation precision advantages of the proposed CAR
procedures. The example is based on a randomized clinical trial
to compare nefazodone, the cognitive behavioral-analysis sys-
tem of psychotherapy, and their combination for the treatment
of chronic depression (Keller et al. 2000). We consider only the
data of nefazodone and the combination treatment because this
article focuses on the scenario of two treatments. The outcome
variable is the last observed 24-item Hamilton Rating Scale
for Depression post treatment (FinalHAMD). The covariates

of interest are age and the 24-item Hamilton Rating Scale for
Depression (HAMD24) at baseline. There were no significant
differences between the two treatment groups with respect to
the covariates, although the age variances were dissimilar (122
vs. 105).

We analyzed the data with an additive model that included
both age and HAMD24 at baseline as covariates,

FinalHAMDi = μ1Ti + μ0(1 − Ti) + f1(AGEi)

+ f2(HAMD24i) + εi, (8)

where εi ∼ N(0, σ 2
a ). The treatment effect of the combination

treatment (Ti = 1) over nefazodone (Ti = 0) is τ = μ1 −
μ0. The estimated smooth effect of the covariates are plotted in
Figure 1. As can be seen from the figure, the age effect appears
quadratic, whereas the effect of baseline HAMD24 is more likely
to be linear. Hence, we also fitted a quadratic model for the data,

FinalHAMDi = μ1Ti + μ0(1 − Ti) + β1AGEi + β2AGE2
i

+ β3HAMD24i + εi, (9)

where εi ∼ N(0, σ 2
q ). The covariate effects, including the

quadratic age effect, are all significant in this model.
For comparison, four randomization procedures, including

CR, two COV procedures with w2 = 0 (balancing covariate
means only) and w2 > 0 (balancing both covariate means and
covariance matrices), and KER, were applied to reassign the
patients receiving nefazodone or the combination treatment. To
minimize the impact of variability differences between the two
covariates, we used standardized values in the three CAR pro-
cedures. After assignment of the patients, outcomes were gen-
erated with the estimated parameters from the additive model
(8) and the quadratic model (9) as the true values. Specifically,
the true values of τ were set to −4.95 and −4.87 for the additive
model and the quadratic model, respectively. It was also noted
that the variability of the random errors dominated that of the
covariates in both models, so we set σa = σq = 2 to make
the effects of random errors and covariates more comparable.
We further estimated the treatment effect by the differences
in observed sample means τ̂ as described in Section 4. Each

Figure 1. Estimated smooth effects of the covariates under the additive model for the depression data.
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Table 4. Absolute differences in covariate means and variances between treat-
ments under various randomization procedures for the depression data.

Randomization Absolute difference Absolute difference
in means in variances

Age HAMD24 Age HAMD24

CR 0.81 0.38 10.37 2.53
COV (w0, w1, w2) = (1, 1, 0) 0.06 0.02 9.76 2.06
COV (w0, w1, w2) = (1, p, 1) 0.07 0.03 1.52 0.31
KER 0.17 0.09 3.59 1.17

Table 5. Means and standard deviations (STD) of treatment effect estimates under
various randomization procedures and models for the depression data.

Randomization Additive model Quadratic model
(τ = −4.95) (τ = −4.87)

Mean STD Mean STD

CR −4.95 0.29 −4.87 0.30
COV (w0, w1, w2) = (1, 1, 0) −4.95 0.23 −4.87 0.23
COV (w0, w1, w2) = (1, p, 1) −4.95 0.19 −4.87 0.19
KER −4.95 0.20 −4.87 0.20

scenario was simulated 5000 times. To evaluate each covariate
balance, we calculated the average of the absolute differences in
covariate means and variances between treatments. The results
are listed in Table 4. The estimation precision was assessed using
simulated means and standard deviations of the treatment effect
estimates τ̂ . The results are presented in Table 5.

Table 4 shows that better covariate balance can be obtained by
the proposed procedures, COV and KER, than by CR. COV with
w2 = 0 provides the best balance of covariate means, but the
variance differences are similar to those from CR, making the
overall performance of COV with w2 = 0 less satisfactory than
the other two CAR procedures. COV with w2 > 0 outperforms
all of the other methods in reducing the absolute differences in
covariate variances and is only slightly worse than COV with
w2 = 0 in terms of balancing means. The performance of KER
falls between CR and COV with w2 > 0 because it does not
directly balance the first and second moments of the covariates.

From Table 5 it can also be seen that the variances of the
treatment effect estimates from the three CAR procedures are
all lower than the corresponding values from CR, indicating
that covariate balancing improved the estimation precision.
Because of the apparent quadratic effect in the data, the pre-
cision improvement is most noticeable for COV with w2 > 0
under both the additive and quadratic models.

7. Conclusion

In this article, we propose a new and unified family of CAR
procedures that balance general covariate features. The con-
vergence rates of imbalance vectors and the treatment effect
estimation are evaluated both theoretically and by numerical
studies. It is shown that the procedures have favorable theoreti-
cal and practical properties relative to complete randomization
and existing CAR procedures. The results of this article could
be further generalized in several ways. First, it is important to
extend the framework to handle multiple treatments that may
have unequal target allocations (Bugni, Canay, and Shaikh 2019;
Hu and Zhang 2020). Second, other kernel-induced imbalance
measures could be assessed for application within the proposed

framework. Finally, adjustment for additional baseline covari-
ates could be considered to improve precision (Ma, Tu, and Liu
2020b; Ye, Yi, and Shao 2020).

Supplementary Materials

The Supplementary Materials include (1) the Appendix containing techni-
cal proofs and additional simulation results and (2) the code used for this
article.
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