
OPORP: One Permutation + One Random Projection
Ping Li, Xiaoyun Li

LinkedIn Ads

700 Bellevue Way NE, Bellevue, WA, 98004, USA

{pinli,xiaoyli}@linkedin.com

ABSTRACT
OPORP is a variant of the count-sketch data structure by using a

fixed-length binning scheme and a normalization step for the

estimation. In our experience, we find engineers like the name “one

permutation + one random projection” as it tells the exact steps.

Consider two vectors (e.g., embeddings): 𝑢, 𝑣 ∈ R𝐷 with 𝜌 =

cos(𝑢, 𝑣). In embedding-based applications (e.g., EBR), 𝐷 = 256 ∼
4096 are common. With OPORP, we first apply a permutation

on the data vectors. A vector 𝑟 ∈ R𝐷 is generated i.i.d. with

𝐸 (𝑟𝑖) = 0, 𝐸 (𝑟2
𝑖
) = 1, 𝐸 (𝑟3

𝑖
) = 0, 𝐸 (𝑟4

𝑖
) = 𝑠 , where 𝑠 ≥ 1. We multiply

(as Hadamard product) 𝑟 with all permuted data vectors. Then we

break the 𝐷 columns into 𝑘 equal-length bins and aggregate (i.e.,

sum) the values in each bin to obtain 𝑘 samples from each data

vector. One crucial step is to normalize the 𝑘 samples to the unit 𝑙2
norm. We show that the estimation variance equals:

(𝑠 − 1)𝐴 + 𝐷 − 𝑘

𝐷 − 1

1

𝑘

[
(1 − 𝜌2)2 − 2𝐴

]
, 𝐴 ≥ 0, 𝑠 ≥ 1,

which reveals several key properties of the proposed scheme:

• We need 𝑠 = 1, otherwise the variance would have a term

which does not decrease with increasing sample size 𝑘 .

• The factor
𝐷−𝑘
𝐷−1 is beneficial in reducing variances, especially

for short vectors which are common in embeddings.

• The term (1 − 𝜌2)2 is a drastic variance reduction compared

to (1+𝜌2) which is the variance term without normalization.

Moreover, the technique in our work also substantially improves

the “very sparse random projections” (VSRP) in KDD’06. Another

major use of OPORP will be in differential privacy (DP).

CCS CONCEPTS
• Mathematics of computing→ Probabilistic algorithms.

KEYWORDS
Compression, Random projection, Hashing, Count Sketch

ACM Reference Format:
Ping Li, Xiaoyun Li. 2023. OPORP: One Permutation + One Random Projec-

tion. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining (KDD ’23), August 6–10, 2023, Long Beach, CA, USA.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3580305.3599457

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0103-0/23/08. . . $15.00

https://doi.org/10.1145/3580305.3599457

1 INTRODUCTION
OPORP (“one permutation + one random projection”) is a vector

compression scheme based on a variant of the count-sketch data

structure [15]. Thework has been adopted by research in differential

privacy (DP) to develop “DP-OPORP”, “DP-SignOPORP”, etc [42].

Given two 𝐷-dimensional vectors (e.g., embeddings) 𝑢, 𝑣 ∈ R𝐷 ,
a routine task is to compute the cosine similarity between 𝑢 and 𝑣 :

𝜌 =

∑𝐷
𝑖=1 𝑢𝑖𝑣𝑖√︃∑𝐷

𝑖=1 𝑢
2

𝑖

√︃∑𝐷
𝑖=1 𝑣

2

𝑖

. (1)

Often times applications also need to compute the (un-normalized)

inner product (denoted by 𝑎) and the 𝑙2 distance (denoted by 𝑑):

𝑎 =

𝐷∑︁
𝑖=1

𝑢𝑖𝑣𝑖 , 𝑑 =

𝐷∑︁
𝑖=1

|𝑢𝑖 − 𝑣𝑖 |2 . (2)

The data vectors can be the “embeddings” learned from deep learn-

ing models such as the celebrated “two-tower” model [32]. They

can also be data vectors processed without training, for example,

the 𝑛-grams (shingles), which can have million or billion or even

higher dimensions [7, 8, 19, 20, 41, 47, 52, 54, 65, 68].

Embedding vectors generated from deep learning models are

typically relatively short (e.g., 𝐷 = 256 or 𝐷 = 1024), often dense

and normalized, i.e.,

∑𝐷
𝑖=1 𝑢

2

𝑖
=

∑𝐷
𝑖=1 𝑣

2

𝑖
= 1. (In this study, we will

not assume data vectors are normalized.) For example, for BERT-

type of embeddings [24], the embedding size 𝐷 is typically 768

or 1024; and Applications with BERT models may also use higher

embedding dimensions, e.g., 𝐷 = 4096 [29]. For GLOVE word

embeddings [56], 𝐷 = 300 is often the default choice. In recent EBR

(embedding based retrieval) applications [14, 73, 74], using 𝐷 = 256

or 𝐷 = 512 appears common. For knowledge graph embeddings,

we see the use of embedding size 𝐷 = 256 ∼ 768 [33, 64]. In many

computer vision applications, the embedding sizes are often larger,

e.g., 4096, 8192 or even larger [36, 38, 72]. The recent advances

in GPT-3 models [10] for NLP tasks (text classification, semantic

search, etc.) learn word embeddings with 𝐷 = 1024 ∼ 12288 [55].

Even with merely 𝐷 = 256, the storage cost for the embeddings

can be prohibitive in practical applications. Suppose an app has 100

million (active) users and each user is represented by a 𝐷 = 256

embedding vector. Then just storing the embeddings (assuming

each dimension is a 4-byte real number) would cost 100GB.

1.1 Count-Sketch and Variants
We briefly review the count-sketch data structure [15]. It first uses

a hash function ℎ : [𝐷] ↦→ [𝑘] to uniformly map each data coordi-

nate to one of 𝑘 bins, and aggregates the coordinate values within

the bin. Each coordinate 𝑖 ∈ [1, 𝐷] is multiplied by a Rademacher

variable 𝑟𝑖 with 𝑃 (𝑟𝑖 = −1) = 𝑃 (𝑟𝑖 = 1) = 1/2 before the aggre-

gation. The binning procedure of count-sketch can be interpreted,

https://doi.org/10.1145/3580305.3599457
https://doi.org/10.1145/3580305.3599457

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Ping Li and Xiaoyun Li

in a probabilistically equivalent manner, as the “variable-length

binning scheme”. That is, we first apply a random permutation

on the data vector and splits the coordinates into 𝑘 bins whose

lengths follow a multinomial distribution. Also, in the original

count-sketch, the above procedure is repeated𝑚 times (for identi-

fying heavy hitters, another term for “compressed sensing”). The

count-sketch data structure and variants have been widely used in

applications. Recent examples include graph embedding [70], word

& image embedding [2, 17, 62, 75, 76], model & communication

compression [18, 31, 46, 60, 69], privacy [42], etc. Note that in many

applications, only𝑚 = 1 repetition is used. Our analysis extends

to𝑚 > 1. In fact, we can recover “very sparse random projections”

(VSRP) [45] if we let𝑚 > 1 (and 𝑘 = 1, i.e., using just one bin).

1.2 (Very Sparse) Random Projection
The work of OPORP is closely related to random projections (RP),

especially “sparse” or “very sparse” random projections [1, 45]. The

basic idea of random projections is to multiply the original data

vectors, e.g., 𝑢 ∈ R𝐷 with a random matrix 𝑅 ∈ R𝐷×𝑘
to generate

new vectors, e.g., 𝑥 ∈ R𝑘 , as samples from which we can recover

the original similarities (e.g., the inner products or cosines). The

entries of the random matrix 𝑅 are typically sampled i.i.d. from

the standard Gaussian distribution or the Rademacher distribution.

The projection matrix can also be made (very) sparse to facilitate

computations. For instance, the entries in 𝑅 take values in {−1, 0, 1}
with probabilities {1/(2𝑠), 1 − 1/𝑠, 1/(2𝑠)}, and we can control the

sparsity by altering 𝑠 . In many cases, 𝑅 can be considerably sparse

while maintaining good learning capacity/utility. For example, in

our experiments (Section 4), the performance does not drop much

when the projection matrix contains around 90% zeros (i.e., 𝑠 = 10).

As an effective tool for dimensionality reduction and geometry

preservation, the methods of (very sparse) random projections have

been widely adopted by numerous applications in data mining,

learning, computational biology, databases, compressed sensing,

etc. [1, 5, 11, 12, 16, 21–23, 26, 28, 30, 35, 45, 48–51, 57, 58, 67].

1.3 Our Contributions
OPORP differs from the standard count-sketch [15] in that: (i) we

use a fixed-length binning scheme; (ii) we adopt a normaliza-
tion step in the estimation stage. Compared with the previous

works [43, 46, 69] which used count-sketch type data structures for

building large-scale machine learning models, the normalization

step significantly reduces the estimation variance, as shown by our

theoretical analysis. In addition, the fixed-binning scheme brings in

a multiplicative term
𝐷−𝑘
𝐷−1 in the variance (𝑘 is the number of bins

in OPORP) which also substantially reduces the estimation error

when (e.g.,) 𝑘 = 𝐷/4. Experiments on retrieval and classification

are provided in Section 4 to validate the advantage of OPORP.

In general, OPORP and VSRP (very sparser random projections)

are two examples of the general family of sparse random projec-

tions. We can utilize OPORP to recover VSRP. Basically, by using

𝑚 repetitions for OPORP and letting the 𝑘 (number of bins) to be

𝑘 = 1, we exactly recover VSRP with𝑚 projections. This means

that the theory we develop for OPORP directly applies to VSRP.

In particular, we immediately obtain the normalized estimator for

VSRP and its theoretical variance. The normalized estimator of

VSRP again substantially improves the un-normalized estimator.

2 THE PROPOSED ALGORITHM OF OPORP
As the name “OPORP” suggests, the proposed algorithm mainly

consists of applying “one permutation” then “one random projec-

tion” on the data vectors ∈ R𝐷 , for the purpose of reducing the

dimensionality, the memory/disk space, and the computational cost.

The dimensionality 𝐷 varies significantly, depending on applica-

tions. As discussed in Section 1, for embedding vectors generated

from learning models, using 𝐷 = 256 ∼ 1024 is fairly common,

although some applications use 𝐷 = 8192 or even larger. As long

as the embedding size 𝐷 is not too large, it is affordable (and con-

venient) to simply generate and store the permutation vector and

the random projection vector. In fact, even when 𝐷 is as large as a

billion (𝐷 = 10
9
), storing two 𝐷-dimensional dense vectors is often

affordable. On the other hand, for applications which need𝐷 ≫ 10
9
,

we might have to resort to various approximations to generate/store

the permutation/projection vectors such as the standard “univer-

sal hashing” [13]. In particular, in the literature of minwise hash-

ing [7–9, 16, 34, 41, 46, 47], there are abundance of discussions about

generating permutations in extremely high-dimensional space.

2.1 The Procedure of OPORP

In summary, the procedure of OPORP has the following steps:

• Generate a permutation 𝜋 : [𝐷] −→ [𝐷].
• Apply the same permutation to all vectors, e.g., 𝑢, 𝑣 ∈ R𝐷 .
• Generate a random vector 𝑟 of size 𝐷 , with i.i.d. entries 𝑟𝑖 of

the following first four moments:

𝐸 (𝑟𝑖) = 0, 𝐸 (𝑟2𝑖) = 1, 𝐸 (𝑟3𝑖) = 0, 𝐸 (𝑟4𝑖) = 𝑠 . (3)

We show that 𝑠 = 1 leads to the smallest variance. We carry

out the calculations for general 𝑠 , for the convenience of

comparing with “very sparse random projections” [45].

• Divide the𝐷 columns into𝑘 bins.Wewill study the following

two binning strategies:

1) Fixed-length binning scheme: every bin has a length of

𝐷/𝑘 . We assume 𝐷 is divisible by 𝑘 , if not, we can always

pad zeros. Our analysis will show that using this fixed-

length scheme results in a variance reduction by a factor

of
𝐷−𝑘
𝐷−1 , which is quite significant for typical EBR appli-

cations, compared to the commonly-analyzed variable-

length binning scheme of count-sketch.

2) Variable-length binning scheme: the bin lengths follow a

multinomial distribution𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝐷, 1/𝑘, 1/𝑘,, 1/𝑘)
with 𝑘 bins. Note that 𝑘 can be larger than 𝐷 , i.e., some

bins will be empty. The variable-length binning scheme is

the strategy in the previous literature [15, 43, 46, 69].

• For each bin, we generate a sample as follows:

𝑥 𝑗 =

𝐷∑︁
𝑖=1

𝑢𝑖𝑟𝑖 𝐼𝑖 𝑗 , 𝑦 𝑗 =

𝐷∑︁
𝑖=1

𝑣𝑖𝑟𝑖 𝐼𝑖 𝑗 , 𝑗 = 1, 2, ..., 𝑘, (4)

where 𝐼𝑖 𝑗 is an indicator: 𝐼𝑖 𝑗 = 1 if the original coordinate

𝑖 is mapped to bin 𝑗 , and 𝐼𝑖 𝑗 = 0 otherwise. As there are

two binning schemes, wherever necessary, we will use 𝐼1,𝑖 𝑗
(fixed-length) and 𝐼2,𝑖 𝑗 (variable-length) to differentiate them.

OPORP: One Permutation + One Random Projection KDD ’23, August 6–10, 2023, Long Beach, CA, USA

After obtaining the samples (𝑥 𝑗 , 𝑦 𝑗), we estimate the inner prod-

uct 𝑎, 𝑙2 distance 𝑑 , and cosine 𝜌 of the original data vectors as:

𝑎 =

𝑘∑︁
𝑗=1

𝑥 𝑗𝑦 𝑗 , ˆ𝑑 =

𝑘∑︁
𝑗=1

|𝑥 𝑗 − 𝑦 𝑗 |2, 𝜌 =

∑𝑘
𝑗=1 𝑥 𝑗𝑦 𝑗√︃∑𝑘

𝑗=1 𝑥
2

𝑗

√︃∑𝑘
𝑗=1 𝑦

2

𝑗

. (5)

Note that, for 𝜌 , the normalization step is not needed at the esti-

mation time if we pre-normalize the samples, e.g., 𝑥 ′
𝑗
=

𝑥 𝑗√︃∑𝑘
𝑡=1 𝑥

2

𝑡

.

Again, wherever necessary, we will use 𝑎1, 𝑎2, ˆ𝑑1, ˆ𝑑2, 𝜌1, 𝜌2, to dif-

ferentiate two binning schemes. If the original data vectors (𝑢, 𝑣) are

normalized, then 𝑎 also provides an estimate of the cosine because

the original inner product is identical to the cosine in normalized

data. One major contribution in this paper is to show that using 𝜌

would be substantially more accurate than using 𝑎 even when the

original data are already normalized. Basically, the variance of 𝜌

is proportional to (1 − 𝜌2)2 while the variance of 𝑎 (in normalized

data) is proportional to 1 + 𝜌2. The difference between (1 − 𝜌2)2
and 1 + 𝜌2 can be highly substantial, especially for |𝜌 | close to 1.

2.2 The Choice of 𝑟
For the random projection vector 𝑟 ∈ R𝐷 , we have only specified

that its entries are i.i.d. and obey the following moment conditions:

𝐸 (𝑟𝑖) = 0, 𝐸 (𝑟2𝑖) = 1, 𝐸 (𝑟3𝑖) = 0, 𝐸 (𝑟4𝑖) = 𝑠, 𝑠 ≥ 1.

Note that 𝑠 ≥ 1 is needed because 𝐸 (𝑟4
𝑖
) ≥ 𝐸2 (𝑟2

𝑖
) = 1. Readers

who are familiar with random projections might attempt to sample

𝑟 from the Gaussian distribution. Our analysis, however, will show

that the Gaussian should not be used for OPORP. This is quite

different from the standard random projections for which using

either the Gaussian distribution or the Rademacher distribution (i.e.,

𝑟𝑖 ∈ {−1, +1} with equal probabilities) would not make an essential

difference. For OPORP, our analysis will show that we need 𝑠 = 1

(i.e., the Rademacher distribution) to achieve a small estimation

variance, by carrying out the calculations for general 𝑠 ≥ 1.

Here, we list some common distributions as follows:

• The standard Gaussian distribution 𝑁 (0, 1). This is the popu-
lar choice in the literature of random projections. The fourth

moment of the standard Gaussian is 3, i.e., 𝑠 = 3.

• The uniform distribution,

√
3 × 𝑢𝑛𝑖 𝑓 [−1, 1]. We need the√

3 factor in order to have 𝐸 (𝑟2
𝑖
) = 1. For this choice of

distribution, we have 𝐸 (𝑟4
𝑖
) = 𝑠 = 9/5.

• The “very sparse” distribution, as used in Li et al. [45]:

𝑟𝑖 =
√
𝑠 ×

−1 with prob. 1/(2𝑠),
0 with prob. 1 − 1/𝑠,

+1 with prob. 1/(2𝑠),
(6)

which generalizes Achlioptas [1] (for 𝑠 = 1 and 𝑠 = 3).

2.3 Comparison: OPORP versus VSRP
Even though OPORP only effectively uses one random projection,

we can still view that as a random projection “matrix” ∈ R𝐷×𝑘
with

exactly one 1 on each row. In comparison, the “very sparse random

projections” (VSRP) [45] uses a random projection matrix ∈ R𝐷×𝑘

with entries sampled i.i.d. from the “very sparse” distribution (6).

Interestingly, for VSRP, if we let its “𝑠” parameter to be 𝑠 = 𝑘 , then

OPORP (with its 𝑠 = 1) and VSRP will have the same sparsity on

average in the projection “matrix”. In terms of implementation,

suppose we store the projection matrix, then it would be more

convenient to store the one projection vector for OPORP because it

is really just a vector of length 𝐷 . In comparison, storing the sparse

random projection matrix would incur an overhead because we

have to store the locations (coordinates) of each non-zero entries.

In terms of the estimation variance, OPORP (with 𝑠 = 1) would

be more accurate than VSRP. Firstly, OPORP with the fixed-length

binning scheme has the
𝐷−𝑘
𝐷−1 variance reduction term. Secondly,

if we do not consider the
𝐷−𝑘
𝐷−1 term and we choose 𝑠 = 1 for both

OPORP and VSRP, then their theoretical variances are identical.

As long as 𝑠 > 1 for VSRP, the theoretical variance is larger than

that of OPORP (for 𝑠 = 1). If we choose 𝑠 = 𝑘 for VSRP (to achieve

the same average sparsity as OPORP), then its variance might be

significantly larger, depending on the original data (e.g., 𝑢 and 𝑣).

As mentioned, we can actually recover VSRP if we just use one

bin for OPORP and repeat the procedure 𝑘 times. This means that

theory and estimatorswe develop for OPORP can be directly utilized

to develop new theory and new estimator for VSRP. In particular,

the normalized estimator for VSRP is developed whose variance

can be directly inferred from the variance of OPORP.

3 THEORETICAL ANALYSIS OF OPORP AND
NUMERICAL VERIFICATION

In this section, we conduct the theoretical analysis to derive the

estimation variances for OPORP. Recall that, we generate 𝑘 samples

𝑥 𝑗 =

𝐷∑︁
𝑖=1

𝑢𝑖𝑟𝑖 𝐼𝑖 𝑗 , 𝑦 𝑗 =

𝐷∑︁
𝑖=1

𝑣𝑖𝑟𝑖 𝐼𝑖 𝑗 , 𝑗 = 1, 2, ..., 𝑘

where 𝐼𝑖 𝑗 is a random variable determined by one of the following

two binning schemes:

(1) (First binning scheme) The fixed-length binning scheme: ev-

ery bin has a length of 𝐷/𝑘 . We assume that 𝐷 is divisible

by 𝑘 , if not, we can pad zeros. This is convenient in practice.

(2) (Second binning scheme) The variable-length binning scheme:

as in the literature [15, 43, 46, 69], the bin lengths follow a

multinomial distribution𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝐷, 1/𝑘, 1/𝑘,, 1/𝑘).
Specifically, 𝐼𝑖 𝑗 = 1 if the original coordinate 𝑖 ∈ [1, 𝐷] is mapped

to bin 𝑗 ∈ [1, 𝑘]; 𝐼𝑖 𝑗 = 0 otherwise. Wherever necessary, we will

use 𝐼1,𝑖 𝑗 and 𝐼2,𝑖 𝑗 to differentiate the two binning schemes. We have

the following Lemma regarding the useful proprieties of 𝐼𝑖 𝑗 .

Lemma 3.1. For ∀𝑖 ∈ [1, 𝐷], 𝑗 ∈ [1, 𝑘], 𝑖 ≠ 𝑖′, 𝑗 ≠ 𝑗 ′, we have

𝐸 (𝐼1,𝑖 𝑗) = 𝐸 (𝐼𝑛
1,𝑖 𝑗) = 𝐸 (𝐼2,𝑖 𝑗) = 𝐸 (𝐼𝑛

2,𝑖 𝑗) =
1

𝑘
, 𝑛 = 1, 2, 3, ...,

𝐸 (𝐼1,𝑖 𝑗 𝐼1,𝑖 𝑗 ′) = 0, 𝐸 (𝐼2,𝑖 𝑗 𝐼2,𝑖 𝑗 ′) = 0,

𝐸 (𝐼1,𝑖 𝑗 𝐼1,𝑖′ 𝑗 ′) =
𝐷

𝐷 − 1

1

𝑘2
, 𝐸 (𝐼2,𝑖 𝑗 𝐼2,𝑖′ 𝑗 ′) =

1

𝑘2
,

𝐸 (𝐼1,𝑖 𝑗 𝐼1,𝑖′ 𝑗) =
𝐷 − 𝑘

𝐷 − 1

1

𝑘2
, 𝐸 (𝐼2,𝑖 𝑗 𝐼2,𝑖′ 𝑗) =

1

𝑘2
,

𝑘𝐸
(
𝐼𝑖 𝑗 𝐼𝑖′ 𝑗

)
+ 𝑘 (𝑘 − 1)𝐸

(
𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ′

)
= 1.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Ping Li and Xiaoyun Li

Proof of Lemma 3.1: Consider the first binning scheme, where

all 𝑘 bins have the same length 𝐷/𝑘 . Thus, 𝐸 (𝐼𝑛
1,𝑖 𝑗

) = 𝐸 (𝐼1,𝑖 𝑗) =

𝐷/𝑘
𝐷

= 1

𝑘
. Each coordinate 𝑖 can only be mapped to one bin, hence

𝐸 (𝐼1,𝑖 𝑗 𝐼1,𝑖 𝑗 ′) = 0,∀𝑗 ≠ 𝑗 ′. To understand 𝐸 (𝐼1,𝑖 𝑗 𝐼1,𝑖′ 𝑗 ′) = 1

𝑘

𝐷/𝑘
𝐷−1 =

𝐷
𝐷−1

1

𝑘2
, we first assign 𝑖 to 𝑗 which occurs with probability 1/𝑘 ;

then assign 𝑖′ to 𝑗 ′, which occurs with probability
𝐷/𝑘
𝐷−1 because

the bin length is 𝐷/𝑘 and there are 𝐷 − 1 locations left (as one is

taken). Finally, to understand 𝐸 (𝐼1,𝑖 𝑗 𝐼1,𝑖′ 𝑗) = 1

𝑘

𝐷/𝑘−1
𝐷−1 = 𝐷−𝑘

𝐷−1
1

𝑘2
,

we only have 𝐷/𝑘 −1 (instead of 𝐷/𝑘) choices because one location
in bin 𝑗 is already taken. For the second binning scheme, as the 𝑘

bin lengths follow the multinomial distribution, the results follow

using properties of multinomial moments after some algebra. □

3.1 The Un-normalized Estimators
Once we have samples 𝑥 𝑗 , 𝑦 𝑗 , we can estimate the original inner

product 𝑎 by 𝑎 =
∑𝑘

𝑗=1 𝑥 𝑗𝑦 𝑗 . The results in Lemma 3.1 can assist us

to derive the variances of the inner product estimators, 𝑎1 and 𝑎2
for two binning schemes, respectively.

Theorem 3.2.

𝐸 (𝑎) = 𝑎,

𝑉𝑎𝑟 (𝑎1) = (𝑠 − 1)
𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖 +
1

𝑘

(
𝑎2 +

𝐷∑︁
𝑖=1

𝑢2𝑖

𝐷∑︁
𝑖=1

𝑣2𝑖 − 2

𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖

)
𝐷 − 𝑘

𝐷 − 1

,

𝑉𝑎𝑟 (𝑎2) = (𝑠 − 1)
𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖 +
1

𝑘

(
𝑎2 +

𝐷∑︁
𝑖=1

𝑢2𝑖

𝐷∑︁
𝑖=1

𝑣2𝑖 − 2

𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖

)
.

Proof of Theorem 3.2: See Appendix A. □

Compared to𝑉𝑎𝑟 (𝑎2) for the variable-bin-length scheme (which

appeared in the prior work [46]), the additional factor
𝐷−𝑘
𝐷−1 in

𝑉𝑎𝑟 (𝑎1) demonstrates the benefit of the proposed fixed-bin-length

strategy. Also, it is clear that we should choose 𝑠 = 1. What if

we only use one bin, i.e., 𝑘 = 1? In this case
𝐷−𝑘
𝐷−1 = 1, i.e., two

binning scheme becomes identical. This is of course expected and

also explains why in
𝐷−𝑘
𝐷−1 we have 𝐷 − 1 instead of just 𝐷 .

What will happen if we repeat OPORP𝑚 times? In that case, the

variances will be reduced by a factor of
1

𝑚 , i.e.,

𝑉𝑎𝑟 (𝑎1;𝑚 repetitions)

=
1

𝑚

[
(𝑠 − 1)

𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖 +
1

𝑘

(
𝑎2 +

𝐷∑︁
𝑖=1

𝑢2𝑖

𝐷∑︁
𝑖=1

𝑣2𝑖 − 2

𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖

)
𝐷 − 𝑘

𝐷 − 1

]
,

𝑉𝑎𝑟 (𝑎2;𝑚 repetitions)

=
1

𝑚

[
(𝑠 − 1)

𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖 +
1

𝑘

(
𝑎2 +

𝐷∑︁
𝑖=1

𝑢2𝑖

𝐷∑︁
𝑖=1

𝑣2𝑖 − 2

𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖

)]
.

Furthermore, if we let 𝑘 = 1 and still repeat𝑚 times, then the two

estimators become the same one and the variance would be

𝑉𝑎𝑟 (𝑎;𝑚 repetitions and 𝑘 = 1)

=
1

𝑚

(
𝑎2 +

𝐷∑︁
𝑖=1

𝑢2𝑖

𝐷∑︁
𝑖=1

𝑣2𝑖 + (𝑠 − 3)
𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖

)
,

which is exactly the variance formula for the inner product esti-

mator of “very sparse random projections” (VSRP) [45]. This is

expected because with 𝑘 = 1 for OPORP and 𝑚 repetitions, we

recover the regular random projections with a projection matrix of

size 𝐷 ×𝑚. We can also change the notation from 𝐷 ×𝑚 to 𝐷 × 𝑘 .

Once we have the variances for the inner products, it is straight-

forward to derive the variances for the distance estimators:

ˆ𝑑 =

𝑘∑︁
𝑗=1

|𝑥 𝑗 − 𝑦 𝑗 |2 =
𝑘∑︁
𝑗=1

����� 𝐷∑︁
𝑖=1

𝑢𝑖𝑟𝑖 𝐼𝑖 𝑗 −
𝐷∑︁
𝑖=1

𝑣𝑖𝑟𝑖 𝐼𝑖 𝑗

�����2 = 𝑘∑︁
𝑗=1

����� 𝐷∑︁
𝑖=1

(𝑢𝑖 − 𝑣𝑖)𝑟𝑖 𝐼𝑖 𝑗

�����2 .
Clearly, we just need to replace, in Theorem 3.2, both 𝑢𝑖 and 𝑣𝑖 by

𝑢𝑖 − 𝑣𝑖 , in order to derive Theorem 3.3.

Theorem 3.3.

𝐸 (ˆ𝑑) = 𝑑,

𝑉𝑎𝑟 (ˆ𝑑1) = (𝑠 − 1)
𝐷∑︁
𝑖=1

|𝑢𝑖 − 𝑣𝑖 |4 +
1

𝑘

(
2𝑑2 − 2

𝐷∑︁
𝑖=1

|𝑢𝑖 − 𝑣𝑖 |4
)
𝐷 − 𝑘

𝐷 − 1

,

𝑉𝑎𝑟 (ˆ𝑑2) = (𝑠 − 1)
𝐷∑︁
𝑖=1

|𝑢𝑖 − 𝑣𝑖 |4 +
1

𝑘

(
2𝑑2 − 2

𝐷∑︁
𝑖=1

|𝑢𝑖 − 𝑣𝑖 |4
)
.

In the variance formulas, the term
𝐷−𝑘
𝐷−1 of the fixed-length bin-

ning scheme, would be beneficial if 𝑘 is a considerable fraction of

𝐷 . This is possible in EBR (embedding-based retrieval) applications.

For example, when 𝐷 = 512 and 𝑘 = 128, we have
𝐷−𝑘
𝐷

= 0.75. A

variance reduction by 25% would be quite considerable. Also the

fixed-length binning scheme is actually easier to implement than

the variable-length binning scheme. Note that, with the fixed-length

scheme, we cannot choose a 𝑘 value between 𝐷/2 and 𝐷 .
Here, we provide a simulation study to verify Theorem 3.2 and

present the simulation results in Figure 1. For each panel (for a

specific target 𝜌) of Figure 1, we first generate two vectors from the

standard bivariate Gaussian distribution with the target correlation

𝜌 . To avoid ambiguity, we generate the vectors many times until

we have two vectors whose cosine value is very close to the tar-

get 𝜌 before we store the vectors. Otherwise the empirical cosine

value can be quite different from the target 𝜌 . After we generate

the two vectors, we normalize them to simplify the presentation

of the results because otherwise the results would be related to

the norms too. Then we conduct OPORP 10
5
times for each 𝑘 in

{2, 4, 8, 16, 32, ..., 𝐷/2}. For convenience, we choose 𝐷 to be powers

of 2. We only present results for 𝐷 = 1024 and 𝐷 = 64 because

the other plots are pretty similar. Note that for the variable-length

binning scheme, we also add simulations for 𝐷/2 < 𝑘 < 𝐷 .

We report the simulations for both 𝑠 = 1 and 𝑠 = 3. In each

panel, we plot four curves: the empirical mean square errors (MSE

= variance + bias
2
) for both binning schemes, and the theoretical

variance curves (in dashed lines) for both binning schemes. The

dashed lines are not visible because they overlap with the empirical

MSEs, which verify that the correctness of the variance formulas.

We can also see that, with the fixed-length binning scheme (Bin#1),

the variance is noticeably smaller than the variance of the variable-

length scheme at the same 𝑘 , confirming the benefits due to the

𝐷−𝑘
𝐷−1 term. Note that for 𝑠 = 3, the difference between the two

binning scheme becomes smaller, because in the formulas the
𝐷−𝑘
𝐷−1

term does not apply to the term involving (𝑠 − 1).

OPORP: One Permutation + One Random Projection KDD ’23, August 6–10, 2023, Long Beach, CA, USA

0 250 500 750 1000

k

10
-3

10
-2

10
-1

10
0

M
S

E

D = 1024, = 0.95, s = 1

Bin #1

Bin #2

0 250 500 750 1000

k

10
-3

10
-2

10
-1

10
0

M
S

E

D = 1024, = 0.95, s = 3

Bin #1

Bin #2

0 250 500 750 1000

k

10
-3

10
-2

10
-1

10
0

M
S

E

D = 1024, = 0.5, s = 1

Bin #1

Bin #2

0 250 500 750 1000

k

10
-3

10
-2

10
-1

10
0

M
S

E

D = 1024, = 0.5, s = 3

Bin #1

Bin #2

0 250 500 750 1000

k

10
-3

10
-2

10
-1

10
0

M
S

E

D = 1024, = 0.05, s = 1

Bin #1
Bin #2

0 250 500 750 1000

k

10
-3

10
-2

10
-1

10
0

M
S

E

D = 1024, = 0.05, s = 3

Bin #1

Bin #2

0 20 40 60

k

10
-2

10
-1

10
0

M
S

E

D = 64, = 0.5, s = 1

Bin #1

Bin #2

0 20 40 60

k

10
-2

10
-1

10
0

M
S

E

D = 64, = 0.5, s = 3

Bin #1

Bin #2

Figure 1: In each panel, we simulated two (normalized) vec-
tors with the target 𝜌 value. Then we conduct OPORP 10

5

times for each 𝑘 , and both binning schemes. In each panel,
the two solid curves represent the empirical mean square
errors (MSE) and the two dashed curves for the theoretical
variances. The dashed curves are not visible because they
overlap with the solid curves. For the fixed-length binning
scheme (“Bin #1”), we cannot choose a 𝑘 between 𝐷/2 and 𝐷 .

3.2 The Normalized Estimators
One can (substantially) improve the estimation accuracy via the

“normalization” trick. That is, once we have the samples (𝑥 𝑗 , 𝑦 𝑗),

𝑗 = 1, 2, ..., 𝑘 , we can use the following normalized estimator:

𝜌 =

∑𝑘
𝑗=1 𝑥 𝑗𝑦 𝑗√︃∑𝑘

𝑗=1 𝑥
2

𝑗

√︃∑𝑘
𝑗=1 𝑦

2

𝑗

.

Again, we use 𝜌1 and 𝜌2 to denote the estimates for the fixed-length

binning and variable-length binning, respectively. As explained

earlier, the normalization step will not be needed at the estimation

time if we pre-normalize the samples, a recommended practice.

Theorem 3.4. For large 𝑘 , 𝜌 converges to 𝜌 , almost surely, with

𝑉𝑎𝑟 (𝜌1) =(𝑠 − 1)𝐴 +
{
1

𝑘

[
(1 − 𝜌2)2 − 2𝐴

]
+𝑂

(
1

𝑘2

)}
𝐷 − 𝑘

𝐷 − 1

,

𝑉𝑎𝑟 (𝜌2) =(𝑠 − 1)𝐴 +
{
1

𝑘

[
(1 − 𝜌2)2 − 2𝐴

]
+𝑂

(
1

𝑘2

)}
.

where

𝐴 =

𝐷∑︁
𝑖=1

(
𝑢′𝑖 𝑣

′
𝑖 − 𝜌/2(𝑢′𝑖

2 + 𝑣 ′𝑖
2)

)
2

, 𝑢′𝑖 =
𝑢𝑖√︃∑𝐷
𝑡=1 𝑢

2

𝑡

, 𝑣 ′𝑖 =
𝑣𝑖√︃∑𝐷
𝑡=1 𝑣

2

𝑡

.

Proof of Theorem 3.4: See Appendix B. □
The variances in Theorem 3.4 hold for large 𝑘 (i.e., 𝑘 → 𝐷 for the

fixed-length binning and 𝑘 → ∞ for the variable-length binning).

Note that the term
1

𝑘

(
1 − 𝜌2

)
2

inside the variances of 𝜌 is exactly

the classical asymptotic variance of the correlation estimator for the

bivariate Gaussian distribution [3]. Because 𝐴 ≥ 0, we know that

OPORP achieves smaller (asymptotic) variance than the classical

estimator in statistics, even without considering the
𝐷−𝑘
𝐷−1 factor.

0 100 200 300 400 500

k

-0.04

-0.03

-0.02

-0.01

0

0.01
B

ia
s

D = 1024, = 0.95

Normalized

0 20 40 60

k

-0.04

-0.03

-0.02

-0.01

0

0.01

B
ia

s

D = 128, = 0.95

Normalized

Figure 2: Empirical biases (𝐸 (𝜌) − 𝜌) of the normalized esti-
mator 𝜌 as well as the un-normalized estimator 𝑎, evaluated
on the same normalized data vectors in Figure 1, for 𝑠 = 1

and the fixed-length binning scheme. The empirical biases
are very small (and bias2 would be much smaller).

A simulation study presented in Figure 2 and Figure 3 shows

that 𝑘 does not need to be large in order for these variance formulas

to be sufficiently accurate.

In Figure 2 and Figure 3, we use the same data vectors as in

Figure 1, for 𝑠 = 1 and only the fixed-length binning scheme. Recall

that those generated vectors are already normalized, and hence the

inner product is the same as the cosine. This makes it convenient

to present both the un-normalized and normalized estimators on

the same plot. Recall MSE = variance + bias
2
. Figure 2 illustrates

that the variance formula in Theorem 3.4 is accurate, as long as

𝑘 is not too small. The biases are very small (and bias
2
would be

much smaller). The empirical MSE plots in Figure 3 confirm the

significant variance reduction due to the normalization step.

3.3 The Normalized Estimator for VSRP
We have explained how to recover “very sparse random projections”

(VSRP) [45] from OPORP by using 𝑘 = 1 and repeating OPORP𝑚

times. We can also take advantage of this finding to develop the

normalized estimator for VSRP and obtain its variance. To present

the estimator and its theory for VSRP, instead of introducing new

notation, we borrow the existing notation. Also, we still use 𝑘 for

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Ping Li and Xiaoyun Li

0 100 200 300 400 500

k

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

M
S

E

D = 1024, = 0.95

Normalized

0 20 40 60

k

10
-4

10
-3

10
-2

10
-1

10
0

M
S

E

D = 128, = 0.95

Normalized

0 100 200 300 400 500

k

10
-3

10
-2

10
-1

10
0

M
S

E

D = 1024, = 0.5

Normalized

0 20 40 60

k

10
-2

10
-1

10
0

M
S

E

D = 128, = 0.5

Normalized

0 100 200 300 400 500

k

10
-3

10
-2

10
-1

10
0

M
S

E

D = 1024, = 0.3

Normalized

0 20 40 60

k

10
-2

10
-1

10
0

M
S

E

D = 128, = 0.3

Normalized

Figure 3: Empirical MSEs for both un-normalized and nor-
malized estimators of OPORP, for 𝑠 = 1 and the fixed-length
binning scheme, using the same data vectors as in Figure 1.
The normalization reduces the MSEs considerably especially
for large 𝜌 (i.e., higher similarity). The dashed curves for the
theoretical (asymptotic) variance of 𝜌 in Theorem 3.4 differ
slightly from the empirical MSEs (solid curves) if 𝑘 is small.

the sample size of VSRP instead of𝑚. That is, we have

𝑥 𝑗 =

𝐷∑︁
𝑖=1

𝑢𝑖𝑟𝑖 𝑗 , 𝑦 𝑗 =

𝐷∑︁
𝑖=1

𝑣𝑖𝑟𝑖 𝑗 , 𝑗 = 1, 2, ..., 𝑘 .

where 𝑟𝑖 𝑗 follows the sparse distribution parameterized by 𝑠:

𝑟𝑖 𝑗 =
√
𝑠 ×

−1 with prob. 1/(2𝑠)
0 with prob. 1 − 1/𝑠

+1 with prob. 1/(2𝑠)
Wehave the un-normalized estimator for 𝑎 and the normalized for 𝜌 :

𝑎𝑣𝑠𝑟𝑝 =
1

𝑘

𝑘∑︁
𝑗=1

𝑥 𝑗𝑦 𝑗 , 𝜌𝑣𝑠𝑟𝑝 =

∑𝑘
𝑗=1 𝑥 𝑗𝑦 𝑗√︃∑𝑘

𝑗=1 𝑥
2

𝑗

√︃∑𝑘
𝑗=1 𝑦

2

𝑗

,

We have shown how to use the OPORP variance of 𝑎 to recover the

variance of 𝑎𝑣𝑠𝑟𝑝 , to be

𝑉𝑎𝑟 (𝑎𝑣𝑠𝑟𝑝) =
1

𝑘

(
𝑎2 +

𝐷∑︁
𝑖=1

𝑢2𝑖

𝐷∑︁
𝑖=1

𝑣2𝑖 + (𝑠 − 3)
𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖

)
.

Since the normalized estimator and its variance for VSRP are new

results, we present the result as a theorem.

Theorem 3.5. As 𝑘 → ∞, 𝜌𝑣𝑠𝑟𝑝 → 𝜌 almost surely, with

𝑉𝑎𝑟 (𝜌𝑣𝑠𝑟𝑝) =
1

𝑘

(
(1 − 𝜌2)2 + (𝑠 − 3)𝐴

)
+𝑂

(
1

𝑘2

)
,

where

𝐴 =

𝐷∑︁
𝑖=1

(
𝑢′𝑖 𝑣

′
𝑖 − 𝜌/2(𝑢′𝑖

2 + 𝑣 ′𝑖
2)

)
2

, 𝑢′𝑖 =
𝑢𝑖√︃∑𝐷
𝑡=1 𝑢

2

𝑡

, 𝑣 ′𝑖 =
𝑣𝑖√︃∑𝐷
𝑡=1 𝑣

2

𝑡

.

One way to compare VSRP (for general 𝑠) with OPORP (for 𝑠 = 1

and𝑚 = 1 repetition), is to evaluate the ratios of variances:

𝑉𝑎𝑟 (𝑎𝑣𝑠𝑟𝑝,𝑠)
𝑉𝑎𝑟 (𝑎) ≈

∑𝐷
𝑖=1 𝑢

2

𝑖

∑𝐷
𝑖=1 𝑣

2

𝑖
+ 𝑎2 + (𝑠 − 3)∑𝐷

𝑖=1 𝑢
2

𝑖
𝑣2
𝑖∑𝐷

𝑖=1 𝑢
2

𝑖

∑𝐷
𝑖=1 𝑣

2

𝑖
+ 𝑎2 − 2

∑𝐷
𝑖=1 𝑢

2

𝑖
𝑣2
𝑖

, (7)

𝑉𝑎𝑟 (𝜌𝑣𝑠𝑟𝑝,𝑠)
𝑉𝑎𝑟 (𝜌) ≈ (1 − 𝜌2)2 + (𝑠 − 3)𝐴

(1 − 𝜌2)2 − 2𝐴
, (8)

where we use ≈ as we neglect the beneficial factor of
𝐷−𝑘
𝐷−1 . Obvi-

ously, when 𝑠 = 1, both ratios equal 1. The ratio increases with

increasing 𝑠 for VSRP. As the ratio is data-dependent, it is better

that we compute it using real data.

1 200 400 600 800

s (VSRP)

1

4

8

12

16

20
V

a
r

ra
ti
o

HONG - KONG

Un-normalized

Normalized

1 200 400 600 800

s (VSRP)

1

4

8

12

16

20

V
a
r

ra
ti
o

UNITED - STATES

Un-normalized

Normalized

1 200 400 600 800

s (VSRP)

1

4

8

12

16

20

V
a
r

ra
ti
o

SAN - FRANCISCO

Un-normalized

Normalized

1 200 400 600 800

s (VSRP)

1

4

8

12

16

20

V
a
r

ra
ti
o

GAMBIA - KIRIBATI

Un-normalized

Normalized

Figure 4: Ratio of variances in (7) and (8) to compare VSRP
(parameterized by 𝑠) with OPORP (for its 𝑠 = 1), for both the
un-normalized (dashed) and normalized (solid) estimators,
on four word pairs from the “Words” dataset (see Table 1).

Figure 4 presents the variance ratios in (7) and (8) on four selected

word (vector) pairs from the “Words” dataset; see Table 1 for the

description of the data. In general, if the 𝑠 is not too large for VSRP

(e.g., 𝑠 < 10), then VSRP works pretty well. For larger 𝑠 , then

the performance of VSRP largely depends on data. For example,

on “SAN-FRANCISCO”, VSRP with the normalized estimator still

works well (the variance ratio is smaller than 2) if with 𝑠 = 200.

On “HONG-KONG”, however, VSRP does not perform well: for the

normalized estimator, the variance ratio > 4 when 𝑠 > 40; and for

the un-normalized estimator, the variance ratio > 4 when 𝑠 > 150.

The variance ratio = 4 means that we need to increase the sample

size of VSRP by a factor of 4 in order to maintain the same accuracy.

For VSRP with a the projection matrix size of size 𝐷 ×𝑘 , it will need

OPORP: One Permutation + One Random Projection KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Table 1: Summary statistics of word-pairs from the “Words”
dataset [41]. For example, “HONG” represents a vector of
length 2

16 with each entry being the number of times that
“HONG” appears in the collection of 216 documents.

word 1 word 2 𝜌 𝑎 =
∑𝐷
𝑖=1 𝑢𝑖𝑣𝑖

∑𝐷
𝑖=1 𝑢

2

𝑖

∑𝐷
𝑖=1 𝑣

2

𝑖

HONG KONG 0.9623 12967 13556 13395

WEEK MONTH 0.8954 281297 323073 305468

OF AND 0.8788 57219161 69006071 61437886

UNITED STATES 0.6693 69201 85934 124415

BEFORE AFTER 0.6633 59136 65541 121284

SAN FRANCISCO 0.5623 29386 125109 21832

GAMBIA KIRIBATI 0.5250 228 360 524

RIGHTS RESERVED 0.3949 14710 79527 17449

HUMAN NATURE 0.2992 14896 87356 28367

𝑠 = 𝑘 if we hope to achieve the same level of sparsity as OPORP.

Depending on applications, we typically observe that 𝑘 = 100 ∼ 500

might be sufficient for the standard (dense) random projections.

In summary, VSRP should work well in general if we use a

sparsity parameter 𝑠 around 10. VSRP may still perform well with a

much larger 𝑠 but then that will be data-dependent. In Section 4, the

experimental results on VSRP will also confirm the same finding.

3.4 The Inner Product Estimators
The simulations in Figure 1, Figure 2, and Figure 3 have used data

vectors which are normalized to the unit 𝑙2 norm, in part for the

convenience of presenting the plots. In many EBR applications,

the embedding vectors from learning models are indeed already

normalized. On the other hand, there are also numerous applica-

tions which use un-normalized data. In fact, the entire literature

about “maximum inner product search” (MIPS) [4, 59, 61, 66, 78]

is built on the fact that in many applications the norms are differ-

ent and the goal is to find the maximum inner products (instead

of the cosines). Also see Fan et al. [27] for the use of MIPS on

advertisement retrievals in a commercial search engine.

Recall that, with samples (𝑥 𝑗 , 𝑦 𝑗), 𝑗 = 1, ..., 𝑘 , we can estimate

the inner product 𝑎 by 𝑎 =
∑𝑘

𝑗=1 𝑥 𝑗𝑦 𝑗 . To improve the estima-

tion accuracy, we can utilize the normalized cosine estimator 𝜌 =∑𝑘
𝑗=1 𝑥 𝑗 𝑦 𝑗√︃∑𝑘

𝑗=1 𝑥
2

𝑗

√︃∑𝑘
𝑗=1 𝑦

2

𝑗

to have a “normalized inner product estimator”𝑎𝑛 :

𝑎𝑛 = 𝜌

√√√
𝐷∑︁
𝑖=1

𝑢2
𝑖

√√√
𝐷∑︁
𝑖=1

𝑣2
𝑖
,

whose variance is the scaled version of the variance of 𝜌 :

𝑉𝑎𝑟 (𝑎𝑛) = 𝑉𝑎𝑟 (𝜌)
𝐷∑︁
𝑖=1

𝑢2𝑖

𝐷∑︁
𝑖=1

𝑣2𝑖 .

Table 1 lists 9 word-pairs from the “Words” dataset [41]. Each

word represents a vector of length 2
16

and each entry records the

number of times that word appears in a collection of 2
16

documents.

The selected 9 pairs cover a wide range of sparsity and similarity.

Next, we compare the two inner product estimators 𝑎 and 𝑎𝑛 for

these 9 pairs of words. In order to provide a more complete picture,

we also add another estimator based on the (approximate) maximum

likelihood estimation (MLE). Because characterizing the exact joint

distribution of (𝑥 𝑗 , 𝑦 𝑗), 𝑗 = 1, 2, ..., 𝑘 would be too complicated, we

resort to the MLE for the standard Gaussian random projections, as

studied in Li et al. [44]. Basically, they show that the MLE estimator

𝑎𝑚 is the solution to the following cubic equation:

𝑎3𝑚 − 𝑎2𝑚

𝑘∑︁
𝑗=1

𝑥 𝑗𝑦 𝑗 −
𝐷∑︁
𝑖=1

𝑢2𝑖

𝐷∑︁
𝑖=1

𝑣2𝑖

𝑘∑︁
𝑗=1

𝑥 𝑗𝑦 𝑗

+ 𝑎𝑚
©«−

𝐷∑︁
𝑖=1

𝑢2𝑖

𝐷∑︁
𝑖=1

𝑣2𝑖 +
𝐷∑︁
𝑖=1

𝑢2𝑖

𝑘∑︁
𝑗=1

𝑦2𝑗 +
𝐷∑︁
𝑖=1

𝑣2𝑖

𝑘∑︁
𝑗=1

𝑥2𝑗
ª®¬ = 0.

The MLE has the smallest variance if

∑𝐷
𝑖=1 𝑢

2

𝑖
and

∑𝐷
𝑖=1 𝑣

2

𝑖
are

known. Obviously, the estimator 𝑎𝑚 can no longer be written as an

inner product (i.e., 𝑎𝑚 is not a valid kernel for machine learning),

unlike 𝑎 or 𝜌 or 𝑎𝑛 . Nevertheless, we can still use the MLE to assess

the accuracy of estimators to see how close they are to be optimal.

Although we do not have the exact MLE for OPORP, we still use

the above cubic equation as the “surrogate” for the MLE of OPORP

and plot the empirical MSEs together with the MSEs of 𝑎 and 𝑎𝑛 in

Figure 5, for estimating the inner products of the 9 word-pairs in

Table 1. Each panel of Figure 5 presents 5 curves: the empirical MSEs

for 𝑎, 𝑎𝑛 , and 𝑎𝑚 , and the theoretical variances for 𝑎 and 𝑎𝑛 . As

expected, for 𝑎 (the un-normalized estimator), the empirical MSEs

overlap with the theoretical variances. The normalized estimator 𝑎𝑛
is considerably more accurate than the un-normalized estimator 𝑎,

especially for word pairs with higher similarities. Also, for 𝑎𝑛 , the

30 100 1000

k

10
2

10
3

10
4

10
5

10
6

10
7

M
S

E

HONG - KONG

Unormalized

Normalized

Approx. MLE

30 100 1000

k

10
6

10
7

10
8

10
9

10
10

M
S

E

WEEK - MONTH

Unormalized

Normalized

Approx. MLE

30 100 1000

k

10
11

10
12

10
13

10
14

10
15

M
S

E

OF - AND

Unormalized

Normalized

Approx. MLE

30 100 1000

k

10
6

10
7

10
8

10
9

M
S

E

UNITED - STATES

Unormalized

Normalized

Approx. MLE

30 100 1000

k

10
6

10
7

10
8

10
9

M
S

E

BEFORE - AFTER

Unormalized

Normalized

Approx. MLE

30 100 1000

k

10
6

10
7

10
8

M
S

E

SAN - FRANCISCO

Unormalized

Normalized

Approx. MLE

30 100 1000

k

10
2

10
3

10
4

M
S

E

GAMBIA - KIRIBATI

Unormalized

Normalized

Approx. MLE

30 100 1000

k

10
6

10
7

10
8

M
S

E

RIGHTS - RESERVED

Unormalized

Normalized

Approx. MLE

30 100 1000

k

10
6

10
7

10
8

M
S

E

HUMAN - NATURE

Unormalized

Normalized

Approx. MLE

Figure 5: We estimate the inner products of the 9 pairs of
words in Table 1, using the un-normalized estimator 𝑎, the
normalized estimator 𝑎𝑛 , as well as the approximate MLE
estimator 𝑎𝑚 . We also plot, as dashed curves, the theoretical
variances for 𝑎 and 𝑎𝑛 . As expected, for 𝑎, the empirical MSEs
overlap with the theoretical variances. The normalized esti-
mator 𝑎𝑛 is considerably more accurate than 𝑎, especially for
word pairs with higher similarities. Also, for 𝑎𝑛 , the empiri-
cal MSEs do not differ much from the theoretical asymptotic
variances. The “approximate MLE” 𝑎𝑚 is still more accurate
than 𝑎𝑛 , although the differences are quite small.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Ping Li and Xiaoyun Li

empirical MSEs do not differ much from the theoretical asymptotic

variances, although they do not fully overlap. Interestingly, the

“approximate MLE” 𝑎𝑚 is still more accurate than the normalized

estimator 𝑎𝑛 , although the differences are quite small.

Finally, Figure 6 compares VSRP (for its 𝑠 ∈ {1, 10, 30, 100, 200})
with OPORP, for both the normalized and un-normalize estimator,

using the “HONG-KONG” word pair. The plots confirm the the-

oretical result in Theorem 3.5. In this example, VSRP with 𝑠 = 1

has essentially the same MSEs as OPORP, as the theory predicts.

Note that in this case
𝐷−𝑘
𝐷−1 is too small to be able to help OPORP to

reduce the variance. As we increase 𝑠 for VSRP, the accuracy de-

grades quite substantially, again as predicted by the theory. We will

observe the similar pattern in the experimental study in Section 4.

30 100 1000

k

10
6

10
7

10
8

M
S

E

s = 1

10

30

100

s = 200

Un-normalized

HONG - KONG

VSRP Empircal

VSRP Theory

OPORP Empirical

30 100 1000

k

10
3

10
4

10
5

10
6

M
S

E

s = 1

10

30

100

s = 200

Normalized

HONG - KONG

VSRP Empircal

VSRP Theory

OPORP Empirical

Figure 6: Comparing VSRP (with 𝑠 ∈ {1, 10, 30, 100, 200}) with
OPORP, in terms of their empirical MSEs, for both the un-
normalized (left) and normalized (right) estimators, for the
“HONG-KONG” word pair. As predicted by the theory, VSRP
with 𝑠 = 1 essentially has the same accuracy as OPORP.
Clearly, the normalized estimators are substantially more
accurate than the un-normalized estimators. For the un-
normalized VSRP estimator, the theoretical variance curves
(dashed) overlap the solid MSE curves (solid). For the nor-
malized VSRP estimator, the empirical MSEs slightly deviate
from the theoretical variances (in Theorem 3.5) for small 𝑘 .

4 EXPERIMENTS
For the sake of repeatability, we conduct experiments on two stan-

dard (small) datasets: the MNIST dataset with 60000 training sam-

ples and 10000 testing samples, and the ZIP dataset (zipcode) with

7291 training samples and 2007 testing samples. The data vectors

are normalized to have the unit 𝑙2 norm. The MNIST dataset has

784 features and the ZIP dataset has 256 features. These dimensions

well correspond with typical EBR embedding vector sizes.

4.1 Retrieval
We treat the test data as query vectors. For each query vector, we

compute/estimate the cosine similarities with all the data vectors in

the training set. For each estimation method, we rank the retrieved

data vectors according to the estimated cosine similarities. In other

words, there will be two ranked lists, one using the true cosines

and the other using estimated cosines. By walking down the lists,

we can compute the precision and recall curves. This allows us to

compare OPORP with VSRP and their various estimators.

Figure 7 presents the precision-recall curves for retrieving the

top-50 candidates on MNIST. The curves for top-10 are pretty simi-

lar. As expected, the OPORP normalized estimator performs much

0 0.2 0.4 0.6 0.8 1

recall

0

0.2

0.4

0.6

0.8

1

p
re

c
is

io
n

MNIST k = 32

1

s = 100

OPORP-norm

OPORP

VSRP

0 0.2 0.4 0.6 0.8 1

recall

0

0.2

0.4

0.6

0.8

1

p
re

c
is

io
n MNIST k = 64

110
50

s = 100

OPORP-norm

OPORP

VSRP

0 0.2 0.4 0.6 0.8 1

recall

0

0.2

0.4

0.6

0.8

1

p
re

c
is

io
n

MNIST k = 128

11050
s = 100

OPORP-norm

OPORP

VSRP

0 0.2 0.4 0.6 0.8 1

recall

0

0.2

0.4

0.6

0.8

1

p
re

c
is

io
n

MNIST k = 256

11050
s = 100

OPORP-norm

OPORP

VSRP

Figure 7: Precision-recall curves for MNIST (top-50) retrieval,
using estimated cosines from the OPORP normalized estima-
tor 𝜌 , the OPORP un-normalized estimator 𝑎 (note that the
original data are normalized), and the VSRP (parameterized
by 𝑠) inner product estimator for 𝑠 ∈ {1, 10, 50, 100}.

0 0.2 0.4 0.6 0.8 1

recall

0

0.2

0.4

0.6

0.8

1

p
re

c
is

io
n

MNIST k = 32
1

50
s = 100

OPORP-norm

VSRP-norm

OPORP

0 0.2 0.4 0.6 0.8 1

recall

0

0.2

0.4

0.6

0.8

1

p
re

c
is

io
n

MNIST k = 64

11050
s = 100

OPORP-norm

VSRP-norm

OPORP

0 0.2 0.4 0.6 0.8 1

recall

0

0.2

0.4

0.6

0.8

1

p
re

c
is

io
n

MNIST k = 128

11050
s = 100

OPORP-norm

VSRP-norm

OPORP

0 0.2 0.4 0.6 0.8 1

recall

0

0.2

0.4

0.6

0.8

1

p
re

c
is

io
n

MNIST k = 256

1
50

s = 100

OPORP-norm

VSRP-norm

OPORP

Figure 8: The content is similar to Figure 7, but this time we
normalize the estimator of VSRP with 𝑠 ∈ {1, 10, 50, 100}.

better than the un-normalized inner product estimator of OPORP,

for all 𝑘 ∈ {32, 64, 128, 256}. The comparisons with VSRP (parame-

terized by 𝑠) are very interesting. Recall that VSRPwith 𝑠 = 1 has the

same variance as the un-normalized estimator of OPORP except for

the
𝐷−𝑘
𝐷−1 term. In Figure 7, it is clear that the un-normalized OPORP

estimator performs better than VSRP, which is due to the
𝐷−𝑘
𝐷−1

term. This effect is especially obvious for 𝑘 = 256 and 𝑘 = 128. By

increasing 𝑠 for VSRP, we can observe deteriorating performances.

In particular, when 𝑠 = 100 (i.e., the projection matrix of VSRP is

extremely sparse), the loss of accuracy might be unacceptable.

Figure 8 is quite similar to Figure 7 except that Figure 8 presents

the normalized inner product estimator of VSRP, again for 𝑠 ∈

OPORP: One Permutation + One Random Projection KDD ’23, August 6–10, 2023, Long Beach, CA, USA

{1, 10, 50, 100}. Indeed, as already shown by theory, the normalized

estimator of VSRP improves the accuracy considerably. On the

other hand, we still observe that, when 𝑠 = 1 for VSRP, its accuracy

is slightly worse than OPORP (due to the
𝐷−𝑘
𝐷−1 factor); and when

𝑠 = 100, there is a severe deterioration of performance. Figure 8

once again confirms that the normalization trick is an excellent

tool, which ought to be taken advantage of.

0 0.2 0.4 0.6 0.8 1

recall

0

0.2

0.4

0.6

0.8

p
re

c
is

io
n

1

50

s = 100

ZIP k = 32

OPORP-norm

OPORP

VSRP

0 0.2 0.4 0.6 0.8 1

recall

0

0.2

0.4

0.6

0.8
p
re

c
is

io
n

110
50

s = 100

ZIP k = 32

OPORP-norm

VSRP-norm

OPORP

0 0.2 0.4 0.6 0.8 1

recall

0

0.2

0.4

0.6

0.8

1

p
re

c
is

io
n

ZIP k = 64

1

10

50

s = 100

OPORP-norm

OPORP

VSRP

0 0.2 0.4 0.6 0.8 1

recall

0

0.2

0.4

0.6

0.8

1

p
re

c
is

io
n

ZIP k = 64

1
10

50

s = 100

OPORP-norm

VSRP-norm

OPORP

0 0.2 0.4 0.6 0.8 1

recall

0

0.2

0.4

0.6

0.8

1

p
re

c
is

io
n

ZIP k = 128

110

50

s = 100

OPORP-norm

OPORP

VSRP

0 0.2 0.4 0.6 0.8 1

recall

0

0.2

0.4

0.6

0.8

1

p
re

c
is

io
n

ZIP k = 128

1
1050

s = 100

OPORP-norm

VSRP-norm

OPORP

Figure 9: Precision-recall curves for ZIP (top-10) retrieval.
The left panels are analogous to Figure 7 and the right panels
are analogous to Figure 8 for MNIST retrieval.

Figure 9 presents the (top-10) retrieval experiments on the ZIP

dataset. The plots are analogous to the plots in Figure 7 and Figure 8,

with essentially the same conclusion. The normalized estimators

considerably improve their un-normalized counterparts, for both

VSRP and OPORP. There is more obvious gap between OPORP and

VSRP with 𝑠 = 1 because
𝐷−𝑘
𝐷−1 is quite small in for this dataset.

4.2 KNN classification
Figure 10 presents the experiments on KNN (K nearest neighbors)

classification, in particular 1-NN and 10-NN, for both MNIST and

ZIP datasets. We need the class labels for this set of experiments.

In each panel, the vertical axis represents the test classification

accuracy (in %). The original classification accuracy (the dashed

horizontal curve) is pretty high, but we can approach the same

accuracy with OPORP using the normalized estimator (with e.g.,

𝑘 ≥ 128 for MNIST and 𝑘 ≥ 64 for ZIP). The performance of the

un-normalized estimator of OPORP is considerably worse. Also,

OPORP improves VSRP with 𝑠 = 1 owing to the
𝐷−𝑘
𝐷−1 factor. Again,

using VSRP with large 𝑠 values leads to poor performance.

0 50 100 150 200 250

k

60

70

80

90

100

1
-N

N
 a

c
c
u
ra

c
y
 (

%
)

MNIST

1

50

s = 100

OPORP-norm

OPORP

VSRP

0 50 100 150 200 250

k

60

70

80

90

100

1
0
-N

N
 a

c
c
u
ra

c
y
 (

%
)

MNIST

1

50

s = 100

OPORP-norm

OPORP

VSRP

0 40 80 120

k

40

60

80

100

1
-N

N
 a

c
c
u
ra

c
y
 (

%
)

1

10

50

s = 100

ZIP

OPORP-norm

OPORP

VSRP

0 40 80 120

k

40

60

80

100

1
0
-N

N
 a

c
c
u
ra

c
y
 (

%
)

1

10

50

s = 100

ZIP

OPORP-norm

OPORP

VSRP

Figure 10: 1-NN and 10-NN classification results using cosines.
The horizontal dashed lines represent the results using the
true cosines. The general trends are pretty much the same
as observed in the retrieval experiments in Figure 7. The
vertical axis is the test classification accuracy.

5 CONCLUSION
Computing or estimating the inner products (or cosines) is the

routine operation in numerous applications, not limited to ma-

chine learning. Reducing the storage/memory cost and speeding

up the computations for computing/estimating the inner products

or cosines can be crucial especially in many industrial applications

such as embedding-based retrieval (EBR) for search and advertising.

The “one permutation + one random projection” (OPORP) is a vari-

ant of count-sketch and is closely related to “very sparse random

projections” (VSRP). Compared to the standard random projec-

tions, OPORP is substantially more efficient (as it involves only

one projection) and also more accurate. It differs from the standard

count-sketch in that OPORP utilizes (i) the fixed-length binning
scheme; (ii) the normalized estimator of cosine and inner prod-

uct. We have conducted thorough variance analysis for OPORP (as

well as VSRP) for both un-normalized and normalized estimators.

Among many applications (e.g., AI model compression), this work

can be used as a key component in modern ANN (approximate near

neighbor search) systems. For example, Zhao et al. [77] developed

the GPU graph-based ANN and used random projections to reduce

memory cost when data do not fit in the memory. For large-scale

graph-based ANN methods [53, 78], the main cost is to compute

similarities on the fly. We can effectively compress the vectors using

OPORP to facilitate the distance computations at reduced storage.

OPORP and VSRP (“very sparse random projections”) [45] are two

examples of the family of sparse random projections. Our work on

OPORP naturally recovers the estimator and theory of VSRP. As a

“by-product”, we also develop the normalized estimator for VSRP.

OPORP can be further quantized just like quantized random pro-

jections [6, 16, 23, 25, 30, 37, 39, 40, 48, 50, 51, 63, 71, 79]. Another

major use of OPORP would be for the differential privacy (DP) [42].

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Ping Li and Xiaoyun Li

REFERENCES
[1] Dimitris Achlioptas. Database-friendly random projections: Johnson-

lindenstrauss with binary coins. J. Comput. Syst. Sci., 66(4):671–687, 2003.
[2] Eman Abdullah AlOmar, Wajdi Aljedaani, Murtaza Tamjeed, Mohamed Wiem

Mkaouer, and Yasmine N. El-Glaly. Finding the needle in a haystack: On the auto-

matic identification of accessibility user reviews. In Proceedings of the Conference
on Human Factors in Computing Systems (CHI), pages 387:1–387:15, Virtual Event
/ Yokohama, Japan, 2021.

[3] Theodore W. Anderson. An Introduction to Multivariate Statistical Analysis. John
Wiley & Sons, third edition, 2003.

[4] Yoram Bachrach, Yehuda Finkelstein, Ran Gilad-Bachrach, Liran Katzir, Noam

Koenigstein, Nir Nice, and Ulrich Paquet. Speeding up the Xbox recommender

system using a euclidean transformation for inner-product spaces. In Proceedings
of the Eighth ACM Conference on Recommender Systems (RecSys), pages 257–264,
Foster City, CA, 2014.

[5] Ella Bingham and Heikki Mannila. Random projection in dimensionality reduc-

tion: Applications to image and text data. In Proceedings of the Seventh ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD),
pages 245–250, San Francisco, CA, 2001.

[6] Petros Boufounos and Richard G. Baraniuk. 1-bit compressive sensing. In

Proceedings of the 42nd Annual Conference on Information Sciences and Systems
(CISS), pages 16–21, Princeton, NJ, 2008.

[7] Andrei Z Broder. On the resemblance and containment of documents. In Pro-
ceedings of the Compression and Complexity of Sequences (SEQUENCES), pages
21–29, Salerno, Italy, 1997.

[8] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig.

Syntactic clustering of the web. Comput. Networks, 29(8-13):1157–1166, 1997.
[9] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzenmacher.

Min-wise independent permutations. In Proceedings of the Thirtieth Annual ACM
Symposium on the Theory of Computing (STOC), pages 327–336, Dallas, TX, 1998.

[10] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,

Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris

Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack

Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and

Dario Amodei. Language models are few-shot learners. In Advances in Neural
Information Processing Systems (NeurIPS), pages 1877–1901, virtual, 2020.

[11] Jeremy Buhler. Efficient large-scale sequence comparison by locality-sensitive

hashing. Bioinformatics, 17(5):419–428, 2001.
[12] Emmanuel J. Candès, Justin K. Romberg, and Terence Tao. Robust uncertainty

principles: exact signal reconstruction from highly incomplete frequency infor-

mation. IEEE Trans. Inf. Theory, 52(2):489–509, 2006.
[13] Larry Carter and Mark N. Wegman. Universal classes of hash functions (ex-

tended abstract). In Proceedings of the 9th Annual ACM Symposium on Theory of
Computing (STOC), pages 106–112, Boulder, CO, 1977.

[14] Wei-Cheng Chang, Felix X. Yu, Yin-Wen Chang, Yiming Yang, and Sanjiv Kumar.

Pre-training tasks for embedding-based large-scale retrieval. In Proceedings of
the 8th International Conference on Learning Representations (ICLR), Addis Ababa,
Ethiopia, 2020.

[15] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items

in data streams. Theor. Comput. Sci., 312(1):3–15, 2004.
[16] Moses S Charikar. Similarity estimation techniques from rounding algorithms. In

Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing
(STOC), pages 380–388, Montreal, Canada, 2002.

[17] Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia

to answer open-domain questions. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (ACL), pages 1870–1879, Vancouver,
Canada, 2017.

[18] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and Yixin Chen.

Compressing Neural Networks with the Hashing Trick. In Proceedings of the 32nd
International Conference on Machine Learning (ICML), pages 2285–2294, Lille,
France, 2015.

[19] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael Mitzenmacher, Alessan-

dro Panconesi, and Prabhakar Raghavan. On compressing social networks. In

Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pages 219–228, Paris, France, 2009.

[20] Abhinandan Das, Mayur Datar, Ashutosh Garg, and Shyamsundar Rajaram.

Google news personalization: scalable online collaborative filtering. In Pro-
ceedings of the 16th International Conference on World Wide Web (WWW), pages
271–280, Banff, Alberta, Canada, 2007.

[21] Sanjoy Dasgupta. Experiments with random projection. In Proceedings of the 16th
Conference in Uncertainty in Artificial Intelligence (UAI), pages 143–151, Stanford,
CA, 2000.

[22] Sanjoy Dasgupta and Yoav Freund. Random projection trees and low dimensional

manifolds. In Proceedings of the 40th Annual ACM Symposium on Theory of
Computing (STOC), pages 537–546, Victoria, Canada, 2008.

[23] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-

sensitive hashing scheme based on p-stable distributions. In Proceedings of the
Twentieth Annual Symposium on Computational Geometry (SCG), pages 253–262,
Brooklyn, NY, 2004.

[24] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:

pre-training of deep bidirectional transformers for language understanding. In

Proceedings of the 2019 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies (NAACL-HLT),
pages 4171–4186, Minneapolis, MN, 2019.

[25] Wei Dong, Moses Charikar, and Kai Li. Asymmetric distance estimation with

sketches for similarity search in high-dimensional spaces. In Proceedings of the
31st Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), pages 123–130, 2008.

[26] David L. Donoho. Compressed sensing. IEEE Trans. Inf. Theory, 52(4):1289–1306,
2006.

[27] Miao Fan, Jiacheng Guo, Shuai Zhu, Shuo Miao, Mingming Sun, and Ping Li.

MOBIUS: towards the next generation of query-ad matching in baidu’s sponsored

search. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (KDD), pages 2509–2517, Anchorage, AK,
2019.

[28] Xiaoli Zhang Fern and Carla E. Brodley. Random projection for high dimensional

data clustering: A cluster ensemble approach. In Proceedings of the Twentieth
International Conference (ICML), pages 186–193, Washington, DC, 2003.

[29] John M. Giorgi, Osvald Nitski, Bo Wang, and Gary D. Bader. Declutr: Deep

contrastive learning for unsupervised textual representations. In Proceedings of
the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing, ACL/IJCNLP,
pages 879–895, Virtual Event, 2021.

[30] Michel X. Goemans and David P. Williamson. Improved approximation algo-

rithms for maximum cut and satisfiability problems using semidefinite program-

ming. J. ACM, 42(6):1115–1145, 1995.

[31] Farzin Haddadpour, Belhal Karimi, Ping Li, and Xiaoyun Li. Fedsketch:

Communication-efficient and private federated learning via sketching. arXiv
preprint arXiv:2008.04975, 2020.

[32] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry P.

Heck. Learning deep structured semantic models for web search using click-

through data. In Proceedings of the 22nd ACM International Conference on Infor-
mation and Knowledge Management (CIKM), pages 2333–2338, San Francisco, CA,

2013.

[33] Xiao Huang, Jingyuan Zhang, Dingcheng Li, and Ping Li. Knowledge graph

embedding based question answering. In Proceedings of the Twelfth ACM Inter-
national Conference on Web Search and Data Mining (WSDM), pages 105–113,
Melbourne, Australia, 2019.

[34] Piotr Indyk. Sublinear time algorithms for metric space problems. In Jeffrey Scott

Vitter, Lawrence L. Larmore, and Frank Thomson Leighton, editors, Proceedings
of the Thirty-First Annual ACM Symposium on Theory of Computing (STOC), pages
428–434, Atlanta, GA, 1999.

[35] William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mapping

into Hilbert space. Contemporary Mathematics, 26:189–206, 1984.
[36] Andrej Karpathy, Armand Joulin, and Li Fei-Fei. Deep fragment embeddings

for bidirectional image sentence mapping. In Advances in Neural Information
Processing Systems (NIPS), pages 1889–1897, Montreal, Canada, 2014.

[37] Karin Knudson, Rayan Saab, and Rachel Ward. One-bit compressive sensing with

norm estimation. IEEE Trans. Inf. Theory, 62(5):2748–2758, 2016.
[38] Jack Lanchantin, Tianlu Wang, Vicente Ordonez, and Yanjun Qi. General multi-

label image classification with transformers. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 16478–16488, virtual,
2021.

[39] Cong Leng, Jian Cheng, and Hanqing Lu. Random subspace for binary codes

learning in large scale image retrieval. In Proceedings of the 37th International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR), pages 1031–1034, Gold Coast, Australia, 2014.

[40] Ping Li. Sign-full random projections. In Proceedings of the Thirty-Third AAAI
Conference on Artificial Intelligence (AAAI), pages 4205–4212, Honolulu, HI, 2019.

[41] Ping Li and Kenneth Ward Church. Using sketches to estimate associations. In

Proceedings of the Human Language Technology Conference and the Conference on
Empirical Methods in Natural Language Processing (HLT/EMNLP), pages 708–715,
Vancouver, Canada, https://github.com/pltrees/Smallest-K-Sketch, 2005.

[42] Ping Li and Xiaoyun Li. Differential privacy with random projections and sign

random projections. arXiv preprint, 2023.
[43] Ping Li and Weijie Zhao. GCWSNet: Generalized consistent weighted sampling

for scalable and accurate training of neural networks. In Proceedings of the 31st
ACM International Conference on Information and Knowledge Management (CIKM),
Atlanta, GA, 2022.

[44] Ping Li, Trevor Hastie, and KennethWard Church. Improving random projections

using marginal information. In Proceedings of the 19th Annual Conference on
Learning Theory (COLT), pages 635–649, Pittsburgh, PA, 2006.

[45] Ping Li, Trevor J Hastie, and Kenneth W Church. Very sparse random projections.

In Proceedings of the 12th ACM SIGKDD international conference on Knowledge

https://github.com/pltrees/Smallest-K-Sketch

OPORP: One Permutation + One Random Projection KDD ’23, August 6–10, 2023, Long Beach, CA, USA

discovery and data mining (KDD), pages 287–296, Philadelphia, PA, 2006.
[46] Ping Li, Anshumali Shrivastava, Joshua L. Moore, and Arnd Christian König.

Hashing algorithms for large-scale learning. In Advances in Neural Information
Processing Systems (NIPS), pages 2672–2680, Granada, Spain, 2011.

[47] Ping Li, Art B Owen, and Cun-Hui Zhang. One permutation hashing. In Advances
in Neural Information Processing Systems (NIPS), pages 3122–3130, Lake Tahoe,
NV, 2012.

[48] Ping Li, Michael Mitzenmacher, and Anshumali Shrivastava. Coding for ran-

dom projections. In Proceedings of the 31th International Conference on Machine
Learning (ICML), pages 676–684, Beijing, China, 2014.

[49] Xiaoyun Li and Ping Li. Generalization error analysis of quantized compressive

learning. In Advances in Neural Information Processing Systems (NeurIPS), pages
15124–15134, Vancouver, Canada, 2019.

[50] Xiaoyun Li and Ping Li. Random projections with asymmetric quantization. In

Advances in Neural Information Processing Systems (NeurIPS), pages 10857–10866,
Vancouver, Canada, 2019.

[51] Xiaoyun Li and Ping Li. One-sketch-for-all: Non-linear random features from

compressed linear measurements. In Proceedings of the 24th International Confer-
ence on Artificial Intelligence and Statistics (AISTATS), pages 2647–2655, Virtual
Event, 2021.

[52] Xiaoyun Li and Ping Li. C-MinHash: Improving minwise hashing with circulant

permutation. In Proceedings of the International Conference on Machine Learning
(ICML), pages 12857–12887, Baltimore, MD, 2022.

[53] Yury A. Malkov and Dmitry A. Yashunin. Efficient and robust approximate

nearest neighbor search using hierarchical navigable small world graphs. IEEE
Trans. Pattern Anal. Mach. Intell., 42(4):824–836, 2020.

[54] Fatemeh Nargesian, Erkang Zhu, Ken Q. Pu, and Renée J. Miller. Table union

search on open data. Proc. VLDB Endow., 11(7):813–825, 2018.
[55] Arvind Neelakantan, Tao Xu, Raul Puri, Alec Radford, Jesse Michael Han, Jerry

Tworek, Qiming Yuan, Nikolas Tezak, Jong Wook Kim, and Chris Hallacy. Text

and code embeddings by contrastive pre-training. arXiv preprint arXiv:2201.10005,
2022.

[56] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global

vectors for word representation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1532–1543, Doha, Qatar,
2014.

[57] Stephan Rabanser, Stephan Günnemann, and Zachary C. Lipton. Failing loudly:

An empirical study of methods for detecting dataset shift. In Advances in Neural
Information Processing Systems (NeurIPS), pages 1394–1406, Vancouver, Canada,
2019.

[58] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines.

In Advances in Neural Information Processing Systems (NIPS), pages 1177–1184,
Vancouver, Canada, 2007.

[59] Parikshit Ram and Alexander G Gray. Maximum inner-product search using

cone trees. In Proceedings of the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), pages 931–939, Beijing, China,
2012.

[60] Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Sto-

ica, Vladimir Braverman, Joseph Gonzalez, and Raman Arora. FetchSGD:

Communication-efficient federated learning with sketching. In Proceedings of
the 37th International Conference on Machine Learning (ICML), pages 8253–8265,
Virtual Event, 2020.

[61] Anshumali Shrivastava and Ping Li. Asymmetric LSH (ALSH) for sublinear

time maximum inner product search (MIPS). In Advances in Neural Information
Processing Systems (NIPS), pages 2321–2329, Montreal, Canada, 2014.

[62] Karan Singhal, Hakim Sidahmed, Zachary Garrett, Shanshan Wu, John Rush, and

Sushant Prakash. Federated reconstruction: Partially local federated learning. In

Advances in Neural Information Processing Systems (NeurIPS), virtual, 2021.
[63] Martin Slawski and Ping Li. On the trade-off between bit depth and number of

samples for a basic approach to structured signal recovery from b-bit quantized

linear measurements. IEEE Trans. Inf. Theory, 64(6):4159–4178, 2018.
[64] Giuseppe Spillo, Cataldo Musto, Marco de Gemmis, Pasquale Lops, and Giovanni

Semeraro. Knowledge-aware recommendations based on neuro-symbolic graph

embeddings and first-order logical rules. In Proceedings of the Sixteenth ACM
Conference on Recommender Systems (RecSys), pages 616–621, Seattle, WA, 2022.

[65] Acar Tamersoy, Kevin A. Roundy, and Duen Horng Chau. Guilt by association:

large scale malware detection by mining file-relation graphs. In Proceedings of
the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), pages 1524–1533, New York, NY, 2014.

[66] Shulong Tan, Zhaozhuo Xu, Weijie Zhao, Hongliang Fei, Zhixin Zhou, and Ping

Li. Norm adjusted proximity graph for fast inner product retrieval. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD), pages 1552–1560, Virtual Event, Singapore, 2021.

[67] Tyler M. Tomita, James Browne, Cencheng Shen, Jaewon Chung, Jesse Patsolic,

Benjamin Falk, Carey E. Priebe, Jason Yim, Randal C. Burns, Mauro Maggioni,

and Joshua T. Vogelstein. Sparse projection oblique randomer forests. J. Mach.
Learn. Res., 21:104:1–104:39, 2020.

[68] Pinghui Wang, Yiyan Qi, Yuanming Zhang, Qiaozhu Zhai, Chenxu Wang, John

C. S. Lui, and Xiaohong Guan. A memory-efficient sketch method for estimating

high similarities in streaming sets. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (KDD), pages
25–33, Anchorage, AK, 2019.

[69] Kilian Q. Weinberger, Anirban Dasgupta, John Langford, Alexander J. Smola, and

Josh Attenberg. Feature hashing for large scale multitask learning. In Proceedings
of the 26th Annual International Conference on Machine Learning (ICML), pages
1113–1120, Montreal, Canada, 2009.

[70] Jun Wu, Jingrui He, and Jiejun Xu. DEMO-Net: Degree-specific graph neural

networks for node and graph classification. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD),
pages 406–415, Anchorage, AK, 2019.

[71] Zhaozhuo Xu, Beidi Chen, Chaojian Li, Weiyang Liu, Le Song, Yingyan Lin,

and Anshumali Shrivastava. Locality sensitive teaching. In Advances in Neural
Information Processing Systems (NeurIPS), pages 18049–18062, virtual, 2021.

[72] Chaojian Yu, Xinyi Zhao, Qi Zheng, Peng Zhang, and Xinge You. Hierarchical

bilinear pooling for fine-grained visual recognition. In Proceedings of the 15th
European Conference on Computer Vision (ECCV), Part XVI, pages 595–610,Munich,

Germany, 2018.

[73] Tan Yu, Zhipeng Jin, Jie Liu, Yi Yang, Hongliang Fei, and Ping Li. Boost CTR

prediction for new advertisements via modeling visual content. In Proceedings of
the IEEE International Conference on Big Data (IEEE BigData), Osaka, Japan, 2022.

[74] Tan Yu, Jie Liu, Yi Yang, Yi Li, Hongliang Fei, and Ping Li. EGM: enhanced

graph-based model for large-scale video advertisement search. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD), pages 4443–4451, Washington, DC, 2022.

[75] Shan Zhang, Lei Wang, Naila Murray, and Piotr Koniusz. Kernelized few-shot

object detection with efficient integral aggregation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 19185–
19194, New Orleans, LA, 2022.

[76] Zhaoqi Zhang, Panpan Qi, and Wei Wang. Dynamic malware analysis with

feature engineering and feature learning. In Proceedings of the Thirty-Fourth
AAAI Conference on Artificial Intelligence (AAAI), pages 1210–1217, New York,

NY, 2020.

[77] Weijie Zhao, Shulong Tan, and Ping Li. SONG: approximate nearest neighbor

search on GPU. In Proceedings of the 36th IEEE International Conference on Data
Engineering (ICDE), pages 1033–1044, Dallas, TX, 2020.

[78] Zhixin Zhou, Shulong Tan, Zhaozhuo Xu, and Ping Li. Möbius transformation for

fast inner product search on graph. In Advances in Neural Information Processing
Systems (NeurIPS), pages 8216–8227, Vancouver, Canada, 2019.

[79] Argyrios Zymnis, Stephen P. Boyd, and Emmanuel J. Candès. Compressed sensing

with quantized measurements. IEEE Signal Process. Lett., 17(2):149–152, 2010.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Ping Li and Xiaoyun Li

A PROOF OF THEOREM 3.2
For two data vectors 𝑢, 𝑣 ∈ R𝐷 , recall the notations of OPORP:

𝑎 =

𝑘∑︁
𝑗=1

𝑥 𝑗𝑦 𝑗 , 𝑥 𝑗 =

𝐷∑︁
𝑖=1

𝑢𝑖𝑟𝑖 𝐼𝑖 𝑗 , 𝑦 𝑗 =

𝐷∑︁
𝑖=1

𝑣𝑖𝑟𝑖 𝐼𝑖 𝑗 .

Assume the random variable 𝑟 admits 𝐸 (𝑟𝑖) = 0, 𝐸 (𝑟2
𝑖
) = 1, 𝐸 (𝑟3

𝑖
) =

0, 𝐸 (𝑟4
𝑖
) = 𝑠 . Firstly, for the mean, we have

𝐸 (𝑎) = 𝐸 (
𝑘∑︁
𝑗=1

𝑥 𝑗𝑦 𝑗) = 𝐸 (
𝑘∑︁
𝑗=1

𝐷∑︁
𝑖=1

𝑢𝑖𝑟𝑖 𝐼𝑖 𝑗

𝐷∑︁
𝑖=1

𝑣𝑖𝑟𝑖 𝐼𝑖 𝑗)

= 𝐸 (
𝑘∑︁
𝑗=1

𝐷∑︁
𝑖=1

𝑢𝑖𝑣𝑖𝑟
2

𝑖 𝐼
2

𝑖 𝑗 +
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗) = 𝐸 (
𝑘∑︁
𝑗=1

𝐷∑︁
𝑖=1

𝑢𝑖𝑣𝑖
1

𝑘
) = 𝑎.

We can compute the second moment of 𝑎 as

𝐸 (𝑎2) = 𝐸 (
𝑘∑︁
𝑗=1

𝑥 𝑗𝑦 𝑗)2 = 𝐸 (
𝑘∑︁
𝑗=1

𝐷∑︁
𝑖=1

𝑢𝑖𝑟𝑖 𝐼𝑖 𝑗

𝐷∑︁
𝑖=1

𝑣𝑖𝑟𝑖 𝐼𝑖 𝑗)2

=𝐸 (
𝑘∑︁
𝑗=1

𝐷∑︁
𝑖=1

𝑢𝑖𝑣𝑖𝑟
2

𝑖 𝐼
2

𝑖 𝑗 +
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗)2

=

𝑘∑︁
𝑗=1

𝐸 (
𝐷∑︁
𝑖=1

𝑢𝑖𝑣𝑖𝑟
2

𝑖 𝐼
2

𝑖 𝑗 +
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗)2 +
∑︁
𝑗≠𝑗 ′

𝐸 (
𝐷∑︁
𝑖=1

𝑢𝑖𝑣𝑖𝑟
2

𝑖 𝐼
2

𝑖 𝑗

+
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗) (
𝐷∑︁
𝑖=1

𝑢𝑖𝑣𝑖𝑟
2

𝑖 𝐼
2

𝑖 𝑗 ′ +
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 ′ 𝐼𝑖′ 𝑗 ′). (9)

For the first term,𝐸 (∑𝐷
𝑖=1 𝑢𝑖𝑣𝑖𝑟

2

𝑖
𝐼2
𝑖 𝑗
+∑𝑖≠𝑖′ 𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗)2 =

𝑠
∑𝐷

𝑖=1 𝑢
2

𝑖 𝑣
2

𝑖

𝑘
+∑

𝑖≠𝑖′ (𝑢2𝑖 𝑣
2

𝑖′ + 2𝑢𝑖𝑣𝑖𝑢𝑖′𝑣𝑖′)𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗). To see this calculation, we can

calculate three terms:

𝐸 (
𝐷∑︁
𝑖=1

𝑢𝑖𝑣𝑖𝑟
2

𝑖 𝐼
2

𝑖 𝑗)
2 =𝐸 (

𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖 𝑟
4

𝑖 𝐼
4

𝑖 𝑗) + 𝐸 (
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖𝑟
2

𝑖 𝐼
2

𝑖 𝑗𝑢𝑖′𝑣𝑖′𝑟
2

𝑖′ 𝐼
2

𝑖′ 𝑗)

=𝑠
1

𝑘

𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖 +
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖𝑢𝑖′𝑣𝑖′𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗),

𝐸 (
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗)2 = 𝐸 (
∑︁
𝑖<𝑖′

𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 +
∑︁
𝑖>𝑖′

𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗)2

= 𝐸 [
∑︁
𝑖≠𝑖′

𝑢2𝑖 𝑣
2

𝑖′𝑟
2

𝑖 𝑟
2

𝑖′ 𝐼
2

𝑖 𝑗 𝐼
2

𝑖′ 𝑗 +
∑︁
𝑖<𝑖′

𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗

∑︁
𝑖<𝑖′

𝑢𝑖′𝑣𝑖𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗]

=
∑︁
𝑖≠𝑖′

𝑢2𝑖 𝑣
2

𝑖′𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗) +
∑︁
𝑖≠𝑖′

𝑢𝑖𝑢𝑖′𝑣𝑖𝑣𝑖′𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗),

and 𝐸 (∑𝐷
𝑖=1 𝑢𝑖𝑣𝑖𝑟

2

𝑖
𝐼2
𝑖 𝑗
) (∑𝑖≠𝑖′ 𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗) = 0, by noting that 𝑟𝑖 ’s

are i.i.d. and 𝐸 (𝑟𝑖) = 𝐸 (𝑟3
𝑖
) = 0. Next, we compute

𝐸 (
𝐷∑︁
𝑖=1

𝑢𝑖𝑣𝑖𝑟
2

𝑖 𝐼
2

𝑖 𝑗 +
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗) (
𝐷∑︁
𝑖=1

𝑢𝑖𝑣𝑖𝑟
2

𝑖 𝐼
2

𝑖 𝑗 ′ +
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 ′ 𝐼𝑖′ 𝑗 ′)

= 𝐸 [
𝐷∑︁
𝑖=1

𝑢𝑖𝑣𝑖𝑟
2

𝑖 𝐼
2

𝑖 𝑗

𝐷∑︁
𝑖=1

𝑢𝑖𝑣𝑖𝑟
2

𝑖 𝐼
2

𝑖 𝑗 ′ +
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗

∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 ′ 𝐼𝑖′ 𝑗 ′]

= 𝑠

𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖 𝐸 (𝐼𝑖 𝑗 𝐼𝑖 𝑗 ′) +
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖𝑢𝑖′𝑣𝑖′𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ′) +
∑︁
𝑖≠𝑖′

𝑢2𝑖 𝑣
2

𝑖′𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 𝐼𝑖 𝑗 ′ 𝐼𝑖′ 𝑗 ′)

+
∑︁
𝑖≠𝑖′

𝑢𝑖𝑢𝑖′𝑣𝑖𝑣𝑖′𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 𝐼𝑖 𝑗 ′ 𝐼𝑖′ 𝑗 ′) =
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖𝑢𝑖′𝑣𝑖′𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ′),

where we have used the fact that 𝐼𝑖 𝑗 𝐼𝑖 𝑗 ′ = 0 always. Now turning

back to (9), we obtain 𝐸 (𝑎2) = 𝑠
∑𝐷
𝑖=1 𝑢

2

𝑖
𝑣2
𝑖
+𝑘𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗)

∑
𝑖≠𝑖′ (𝑢2𝑖 𝑣

2

𝑖′ +
2𝑢𝑖𝑣𝑖𝑢𝑖′𝑣𝑖′) +𝑘 (𝑘 − 1)𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ′)

∑
𝑖≠𝑖′ 𝑢𝑖𝑣𝑖𝑢𝑖′𝑣𝑖′ . Therefore, the vari-

ance can be expressed as (after some algebra)

𝑉𝑎𝑟 (𝑎) = 𝐸 (𝑎2) − 𝑎2

=(𝑠 − 1)
𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖 + 𝑘𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗)
∑︁
𝑖≠𝑖′

𝑢2𝑖 𝑣
2

𝑖′ + 𝑘𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗)
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖𝑢𝑖′𝑣𝑖′

=(𝑠 − 1)
𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖 + 𝑘𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗) [𝑎
2 +

𝐷∑︁
𝑖=1

𝑢2𝑖

𝐷∑︁
𝑖=1

𝑣2𝑖 − 2

𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖] .

The remaining part is to compute 𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗) for the two binning

schemes respectively using Lemma 3.1. □

B PROOF OF THEOREM 3.4
Recall the notations in OPORP:

𝑥 𝑗 =

𝐷∑︁
𝑖=1

𝑢𝑖𝑟𝑖 𝐼𝑖 𝑗 , 𝑦 𝑗 =

𝐷∑︁
𝑖=1

𝑣𝑖𝑟𝑖 𝐼𝑖 𝑗 , 𝑗 = 1, 2, ..., 𝑘 .

To analyze the normalized cosine estimator 𝜌 =

∑𝑘
𝑗=1 𝑥 𝑗 𝑦 𝑗√︃∑𝑘

𝑗=1 𝑥
2

𝑗

√︃∑𝑘
𝑗=1 𝑦

2

𝑗

,

it suffices to assume the original data are normalized to unit 𝑙2

norms, i.e.,

∑𝐷
𝑖=1 𝑢

2

𝑖
=

∑𝐷
𝑖=1 𝑣

2

𝑖
= 1. When the data are normalized,

the inner product and the cosine are the same, i.e., 𝑎 = 𝜌 . Thus,

𝐸 (
𝑘∑︁
𝑗=1

𝑥 𝑗𝑦 𝑗) = 𝜌, 𝐸 (
𝑘∑︁
𝑗=1

𝑥2𝑗) = 𝐸 (
𝑘∑︁
𝑗=1

𝑥2𝑗) = 1,

We express the “deviation” as

𝜌 − 𝜌 =

∑𝑘
𝑗=1 𝑥 𝑗𝑦 𝑗 − 𝜌√︃∑𝑘
𝑗=1 𝑥

2

𝑗

√︃∑𝑘
𝑗=1 𝑦

2

𝑗

+ 𝜌
1 −

√︃∑𝑘
𝑗=1 𝑥

2

𝑗

√︃∑𝑘
𝑗=1 𝑦

2

𝑗√︃∑𝑘
𝑗=1 𝑥

2

𝑗

√︃∑𝑘
𝑗=1 𝑦

2

𝑗

=

𝑘∑︁
𝑗=1

𝑥 𝑗𝑦 𝑗 − 𝜌/2
𝑘∑︁
𝑗=1

𝑥2𝑗 − 𝜌/2
𝑘∑︁
𝑗=1

𝑦2𝑗 +𝑂𝑃 (1/𝑘),

where we use the approximation that 1 − 𝑎𝑏 = (1 − 𝑎) + (1 − 𝑏) −
(1 − 𝑎) (1 − 𝑏) for 𝑎, 𝑏 ≈ 1. Hence, it suffices to analyze the term:

(
𝑘∑︁
𝑗=1

𝑥 𝑗𝑦 𝑗 − 𝜌/2
𝑘∑︁
𝑗=1

𝑥2𝑗 − 𝜌/2
𝑘∑︁
𝑗=1

𝑦2𝑗)
2

(10)

=(
𝑘∑︁
𝑗=1

𝑥 𝑗𝑦 𝑗)2 +
𝜌2

4

(
𝑘∑︁
𝑗=1

𝑥2𝑗 +
𝑘∑︁
𝑗=1

𝑦2𝑗)
2 − 𝜌 (

𝑘∑︁
𝑗=1

𝑥 𝑗𝑦 𝑗) (
𝑘∑︁
𝑗=1

𝑥2𝑗 +
𝑘∑︁
𝑗=1

𝑦2𝑗) .

By Theorem 3.2, we know that 𝐸 (∑𝑘
𝑗=1 𝑥 𝑗𝑦 𝑗)2 equals

= (𝑠 − 1)
𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖 + 𝑘𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗) [1 + 𝜌2 − 2

𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖] + 𝜌2, (11)

andwe canwrite𝐸 (∑𝑘
𝑗=1 𝑥

2

𝑗

∑𝑘
𝑗=1 𝑦

2

𝑗
) = 𝐸 (∑𝑘

𝑗=1 𝑥
2

𝑗
𝑦2
𝑗
+∑𝑘

𝑗≠𝑗 ′ 𝑥
2

𝑗
𝑦2
𝑗 ′).

We now calculate each term. First, we have for 𝑗 = 1, ..., 𝑘 ,

𝐸 (𝑥2𝑗𝑦
2

𝑗) = 𝑠
1

𝑘

𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖 + 𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗)
∑︁
𝑖≠𝑖′

(𝑢2𝑖 𝑣
2

𝑖′ + 2𝑢𝑖𝑣𝑖𝑢𝑖′𝑣𝑖′).

OPORP: One Permutation + One Random Projection KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Also, for 𝑗 ≠ 𝑗 ′, 𝐸 (𝑥2
𝑗
𝑦2
𝑗 ′) = 𝐸 (∑𝐷

𝑖=1 𝑢𝑖𝑟𝑖 𝐼𝑖 𝑗)2 (
∑𝐷
𝑖=1 𝑣𝑖𝑟𝑖 𝐼𝑖 𝑗 ′)2 =

𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ′)
∑
𝑖≠𝑖′ 𝑢

2

𝑖
𝑣2
𝑖′ . Therefore, we obtain that

𝐸 (
𝑘∑︁
𝑗=1

𝑥2𝑗

𝑘∑︁
𝑗=1

𝑦2𝑗) = 𝑠

𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖 + 𝑘𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗)
∑︁
𝑖≠𝑖′

(𝑢2𝑖 𝑣
2

𝑖′ + 2𝑢𝑖𝑣𝑖𝑢𝑖′𝑣𝑖′)

+ 𝑘 (𝑘 − 1)𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ′)
∑︁
𝑖≠𝑖′

𝑢2𝑖 𝑣
2

𝑖′ .

Hence, 𝐸 (∑𝑘
𝑗=1 𝑥

2

𝑗
+ ∑𝑘

𝑗=1 𝑦
2

𝑗
)2 equals

= (𝑠 − 1)
𝐷∑︁
𝑖=1

(𝑢4𝑖 + 𝑣4𝑖) + 2𝑘𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗) [4 −
𝐷∑︁
𝑖=1

(𝑢4𝑖 + 𝑣4𝑖)] + 2𝑠

𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖

+ 2𝑘𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗)
∑︁
𝑖≠𝑖′

(𝑢2𝑖 𝑣
2

𝑖′ + 2𝑢𝑖𝑣𝑖𝑢𝑖′𝑣𝑖′) + 2𝑘 (𝑘 − 1)𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ′)
∑︁
𝑖≠𝑖′

𝑢2𝑖 𝑣
2

𝑖′ .

(12)

We now analyze the third term in (10). It holds that

𝐸 (
𝑘∑︁
𝑗=1

𝑥 𝑗𝑦 𝑗) (
𝑘∑︁
𝑗=1

𝑥2𝑗 +
𝑘∑︁
𝑗=1

𝑦2𝑗)

= 𝐸 (
𝑘∑︁
𝑗=1

𝑥3𝑗𝑦 𝑗 +
∑︁
𝑗≠𝑗

𝑥 𝑗𝑦 𝑗𝑥
2

𝑗 ′) + 𝐸 (
𝑘∑︁
𝑗=1

𝑥 𝑗𝑦
3

𝑗 +
∑︁
𝑗≠𝑗

𝑥 𝑗𝑦 𝑗𝑦
2

𝑗 ′).

We have

𝐸 (𝑥 𝑗𝑦3𝑗) = 𝐸 (
𝐷∑︁
𝑖=1

𝑢𝑖𝑟𝑖 𝐼𝑖 𝑗) (
𝐷∑︁
𝑖=1

𝑣𝑖𝑟𝑖 𝐼𝑖 𝑗)3

=𝐸 (
𝐷∑︁
𝑖=1

𝑢𝑖𝑣𝑖𝑟
2

𝑖 𝐼𝑖 𝑗 +
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗) (
𝐷∑︁
𝑖=1

𝑣2𝑖 𝑟
2

𝑖 𝐼𝑖 𝑗 +
∑︁
𝑖≠𝑖′

𝑣𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗)

=𝐸 [
𝐷∑︁
𝑖=1

𝑢𝑖𝑣𝑖𝑟
2

𝑖 𝐼𝑖 𝑗

𝐷∑︁
𝑖=1

𝑣2𝑖 𝑟
2

𝑖 𝐼𝑖 𝑗 +
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗

∑︁
𝑖≠𝑖′

𝑣𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗]

=
𝑠

𝑘

𝐷∑︁
𝑖=1

𝑢𝑖𝑣
3

𝑖 +
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖𝑣
2

𝑖′𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗) + 2

∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖𝑣
2

𝑖′𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗)

=
𝑠

𝑘

𝐷∑︁
𝑖=1

𝑢𝑖𝑣
3

𝑖 + 3𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗)
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖𝑣
2

𝑖′ ,

where we use the following computation:

𝐸 (
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗) (
∑︁
𝑖≠𝑖′

𝑣𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗)

=
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖𝑣
2

𝑖′𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗) + 𝐸 (
∑︁
𝑖<𝑖′

𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗) (
∑︁
𝑖>𝑖′

𝑣𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗)

+ 𝐸 (
∑︁
𝑖>𝑖′

𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗) (
∑︁
𝑖<𝑖′

𝑣𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗)

=
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖𝑣
2

𝑖′𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗) +
∑︁
𝑖<𝑖′

𝑢𝑖𝑣𝑖𝑣
2

𝑖′𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗) +
∑︁
𝑖<𝑖′

𝑢𝑖′𝑣
2

𝑖 𝑣𝑖′𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗)

=2
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖𝑣
2

𝑖′𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗) .

Furthermore, we have

𝐸 (𝑥 𝑗𝑦 𝑗𝑥2𝑗 ′) = 𝐸 (
𝐷∑︁
𝑖=1

𝑢𝑖𝑟𝑖 𝐼𝑖 𝑗) (
𝐷∑︁
𝑖=1

𝑣𝑖𝑟𝑖 𝐼𝑖 𝑗) (
𝐷∑︁
𝑖=1

𝑢𝑖𝑟𝑖 𝐼𝑖 𝑗 ′)2

=𝐸 (
𝐷∑︁
𝑖=1

𝑢𝑖𝑣𝑖𝑟
2

𝑖 𝐼𝑖 𝑗 +
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗) (
𝐷∑︁
𝑖=1

𝑢2𝑖 𝑟
2

𝑖 𝐼𝑖 𝑗 ′ +
∑︁
𝑖≠𝑖

𝑢𝑖𝑢𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 ′ 𝐼𝑖′ 𝑗 ′)

=𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ′)
∑︁
𝑖≠𝑖

𝑢𝑖𝑢
2

𝑖′𝑣𝑖 .

Thus, by symmetry we have

𝐸 (
𝑘∑︁
𝑗=1

𝑥 𝑗𝑦 𝑗) (
𝑘∑︁
𝑗=1

𝑥2𝑗 +
𝑘∑︁
𝑗=1

𝑦2𝑗) (13)

= 𝐸 (
𝑘∑︁
𝑗=1

𝑥3𝑗𝑦 𝑗 +
∑︁
𝑗≠𝑗

𝑥 𝑗𝑦 𝑗𝑥
2

𝑗 ′) + 𝐸 (
𝑘∑︁
𝑗=1

𝑥 𝑗𝑦
3

𝑗 +
∑︁
𝑗≠𝑗

𝑥 𝑗𝑦 𝑗𝑦
2

𝑗 ′)

= 𝑠

𝐷∑︁
𝑖=1

(𝑢𝑖𝑣3𝑖 + 𝑢
3

𝑖 𝑣𝑖) + 3𝑘𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗)
∑︁
𝑖≠𝑖′

(𝑢𝑖𝑣𝑖𝑣2𝑖′ + 𝑢𝑖𝑣𝑖𝑢
2

𝑖′)

+ 𝑘 (𝑘 − 1)𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ′)
∑︁
𝑖≠𝑖

(𝑢𝑖𝑢2𝑖′𝑣𝑖 + 𝑢𝑖𝑣
2

𝑖′𝑣𝑖).

Now we combine (11), (12) and (13) with (10) to obtain

(
𝑘∑︁
𝑗=1

𝑥 𝑗𝑦 𝑗 − 𝜌/2
𝑘∑︁
𝑗=1

𝑥2𝑗 − 𝜌/2
𝑘∑︁
𝑗=1

𝑦2𝑗)
2

= (𝑠 − 1)
𝐷∑︁
𝑖=1

((1 + 𝜌2/2)𝑢2𝑖 𝑣
2

𝑖 + 𝜌2𝑢4𝑖 /4 + 𝜌2𝑣4𝑖 /4 − 𝜌𝑢𝑖𝑣
3

𝑖 − 𝜌𝑢3𝑖 𝑣𝑖)

+ 𝑘𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗) [1 + 𝜌2 − 2

𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖] + 𝜌2𝑘𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗) [1 −
𝐷∑︁
𝑖=1

(𝑢4
𝑖
+ 𝑣4

𝑖
)

2

]

+ 𝜌2 [4 + 2𝑘𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗) (𝜌2 −
𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖)]/2

− 𝜌 [2𝜌 + 2𝑘𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗) (2𝜌 −
𝐷∑︁
𝑖=1

(𝑢3𝑖 𝑣𝑖 + 𝑢𝑖𝑣
3

𝑖))]

= (𝑠 − 1)
𝐷∑︁
𝑖=1

((1 + 𝜌2/2)𝑢2𝑖 𝑣
2

𝑖 + 𝜌2𝑢4𝑖 /4 + 𝜌2𝑣4𝑖 /4 − 𝜌𝑢𝑖𝑣
3

𝑖 − 𝜌𝑢3𝑖 𝑣𝑖)

+ 𝑘𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗) [1 + 𝜌2 − 2

𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖 + 𝜌2 − 𝜌2/2
𝐷∑︁
𝑖=1

(𝑢4𝑖 + 𝑣4𝑖)

+ 𝜌4 − 𝜌2
𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖 − 4𝜌2 + 2𝜌

𝐷∑︁
𝑖=1

(𝑢3𝑖 𝑣𝑖 + 𝑢𝑖𝑣
3

𝑖)]

= (𝑠 − 1)𝐴 + 𝑘𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗) [(1 − 𝜌2)2 − 2𝐴],

where𝐴 =
∑𝐷
𝑖=1 ((1+𝜌2/2)𝑢2𝑖 𝑣

2

𝑖
+𝜌2𝑢4

𝑖
/4+𝜌2𝑣4

𝑖
/4−𝜌𝑢𝑖𝑣

3

𝑖
−𝜌𝑢3

𝑖
𝑣𝑖).

This gives the general expression of the variance term. Apply-

ing Lemma 3.1 leads to the variance formula for the two binning

schemes respectively. Lastly, we may simplify 𝐴 as

𝐴 =

𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖 + 𝜌2/4
𝐷∑︁
𝑖=1

(𝑢2𝑖 + 𝑣2𝑖)
2 − 𝜌

𝐷∑︁
𝑖=1

(𝑢3𝑖 𝑣𝑖 + 𝑢𝑖𝑣
3

𝑖)

=

𝐷∑︁
𝑖=1

(𝑢𝑖𝑣𝑖 −
𝜌

2

(𝑢2𝑖 + 𝑣2𝑖))
2 + 𝜌 (𝑢𝑖𝑣𝑖) (𝑢2𝑖 + 𝑣2𝑖) − 𝜌 (𝑢3𝑖 𝑣𝑖 + 𝑢𝑖𝑣

3

𝑖)

=

𝐷∑︁
𝑖=1

(𝑢𝑖𝑣𝑖 −
𝜌

2

(𝑢2𝑖 + 𝑣2𝑖))
2 .

This completes the proof for normalized data. Otherwise, we need

to replace 𝑢𝑖 and 𝑣𝑖 by 𝑢
′
𝑖
=

𝑢𝑖√︃∑𝐷
𝑡=1 𝑢

2

𝑡

, and 𝑣 ′
𝑖
=

𝑣𝑖√︃∑𝐷
𝑡=1 𝑣

2

𝑡

. □

	Abstract
	1 Introduction
	1.1 Count-Sketch and Variants
	1.2 (Very Sparse) Random Projection
	1.3 Our Contributions

	2 The Proposed Algorithm of OPORP
	2.1 The Procedure of OPORP
	2.2 The Choice of r
	2.3 Comparison: OPORP versus VSRP

	3 Theoretical Analysis of OPORP and Numerical Verification
	3.1 The Un-normalized Estimators
	3.2 The Normalized Estimators
	3.3 The Normalized Estimator for VSRP
	3.4 The Inner Product Estimators

	4 Experiments
	4.1 Retrieval
	4.2 KNN classification

	5 Conclusion
	References
	A Proof of Theorem 3.2
	B Proof of Theorem 3.4

