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ABSTRACT
OPORP is a variant of the count-sketch data structure by using a

fixed-length binning scheme and a normalization step for the

estimation. In our experience, we find engineers like the name “one

permutation + one random projection” as it tells the exact steps.

Consider two vectors (e.g., embeddings): 𝑢, 𝑣 ∈ R𝐷 with 𝜌 =

cos(𝑢, 𝑣). In embedding-based applications (e.g., EBR), 𝐷 = 256 ∼
4096 are common. With OPORP, we first apply a permutation

on the data vectors. A vector 𝑟 ∈ R𝐷 is generated i.i.d. with

𝐸 (𝑟𝑖 ) = 0, 𝐸 (𝑟2
𝑖
) = 1, 𝐸 (𝑟3

𝑖
) = 0, 𝐸 (𝑟4

𝑖
) = 𝑠 , where 𝑠 ≥ 1. We multiply

(as Hadamard product) 𝑟 with all permuted data vectors. Then we

break the 𝐷 columns into 𝑘 equal-length bins and aggregate (i.e.,

sum) the values in each bin to obtain 𝑘 samples from each data

vector. One crucial step is to normalize the 𝑘 samples to the unit 𝑙2
norm. We show that the estimation variance equals:

(𝑠 − 1)𝐴 + 𝐷 − 𝑘

𝐷 − 1

1

𝑘

[
(1 − 𝜌2)2 − 2𝐴

]
, 𝐴 ≥ 0, 𝑠 ≥ 1,

which reveals several key properties of the proposed scheme:

• We need 𝑠 = 1, otherwise the variance would have a term

which does not decrease with increasing sample size 𝑘 .

• The factor
𝐷−𝑘
𝐷−1 is beneficial in reducing variances, especially

for short vectors which are common in embeddings.

• The term (1 − 𝜌2)2 is a drastic variance reduction compared

to (1+𝜌2) which is the variance term without normalization.

Moreover, the technique in our work also substantially improves

the “very sparse random projections” (VSRP) in KDD’06. Another

major use of OPORP will be in differential privacy (DP).

CCS CONCEPTS
• Mathematics of computing→ Probabilistic algorithms.

KEYWORDS
Compression, Random projection, Hashing, Count Sketch

ACM Reference Format:
Ping Li, Xiaoyun Li. 2023. OPORP: One Permutation + One Random Projec-

tion. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining (KDD ’23), August 6–10, 2023, Long Beach, CA, USA.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3580305.3599457

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0103-0/23/08. . . $15.00

https://doi.org/10.1145/3580305.3599457

1 INTRODUCTION
OPORP (“one permutation + one random projection”) is a vector

compression scheme based on a variant of the count-sketch data

structure [15]. Thework has been adopted by research in differential

privacy (DP) to develop “DP-OPORP”, “DP-SignOPORP”, etc [42].

Given two 𝐷-dimensional vectors (e.g., embeddings) 𝑢, 𝑣 ∈ R𝐷 ,
a routine task is to compute the cosine similarity between 𝑢 and 𝑣 :

𝜌 =

∑𝐷
𝑖=1 𝑢𝑖𝑣𝑖√︃∑𝐷

𝑖=1 𝑢
2

𝑖

√︃∑𝐷
𝑖=1 𝑣

2

𝑖

. (1)

Often times applications also need to compute the (un-normalized)

inner product (denoted by 𝑎) and the 𝑙2 distance (denoted by 𝑑):

𝑎 =

𝐷∑︁
𝑖=1

𝑢𝑖𝑣𝑖 , 𝑑 =

𝐷∑︁
𝑖=1

|𝑢𝑖 − 𝑣𝑖 |2 . (2)

The data vectors can be the “embeddings” learned from deep learn-

ing models such as the celebrated “two-tower” model [32]. They

can also be data vectors processed without training, for example,

the 𝑛-grams (shingles), which can have million or billion or even

higher dimensions [7, 8, 19, 20, 41, 47, 52, 54, 65, 68].

Embedding vectors generated from deep learning models are

typically relatively short (e.g., 𝐷 = 256 or 𝐷 = 1024), often dense

and normalized, i.e.,

∑𝐷
𝑖=1 𝑢

2

𝑖
=

∑𝐷
𝑖=1 𝑣

2

𝑖
= 1. (In this study, we will

not assume data vectors are normalized.) For example, for BERT-

type of embeddings [24], the embedding size 𝐷 is typically 768

or 1024; and Applications with BERT models may also use higher

embedding dimensions, e.g., 𝐷 = 4096 [29]. For GLOVE word

embeddings [56], 𝐷 = 300 is often the default choice. In recent EBR

(embedding based retrieval) applications [14, 73, 74], using 𝐷 = 256

or 𝐷 = 512 appears common. For knowledge graph embeddings,

we see the use of embedding size 𝐷 = 256 ∼ 768 [33, 64]. In many

computer vision applications, the embedding sizes are often larger,

e.g., 4096, 8192 or even larger [36, 38, 72]. The recent advances

in GPT-3 models [10] for NLP tasks (text classification, semantic

search, etc.) learn word embeddings with 𝐷 = 1024 ∼ 12288 [55].

Even with merely 𝐷 = 256, the storage cost for the embeddings

can be prohibitive in practical applications. Suppose an app has 100

million (active) users and each user is represented by a 𝐷 = 256

embedding vector. Then just storing the embeddings (assuming

each dimension is a 4-byte real number) would cost 100GB.

1.1 Count-Sketch and Variants
We briefly review the count-sketch data structure [15]. It first uses

a hash function ℎ : [𝐷] ↦→ [𝑘] to uniformly map each data coordi-

nate to one of 𝑘 bins, and aggregates the coordinate values within

the bin. Each coordinate 𝑖 ∈ [1, 𝐷] is multiplied by a Rademacher

variable 𝑟𝑖 with 𝑃 (𝑟𝑖 = −1) = 𝑃 (𝑟𝑖 = 1) = 1/2 before the aggre-

gation. The binning procedure of count-sketch can be interpreted,

https://doi.org/10.1145/3580305.3599457
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in a probabilistically equivalent manner, as the “variable-length

binning scheme”. That is, we first apply a random permutation

on the data vector and splits the coordinates into 𝑘 bins whose

lengths follow a multinomial distribution. Also, in the original

count-sketch, the above procedure is repeated𝑚 times (for identi-

fying heavy hitters, another term for “compressed sensing”). The

count-sketch data structure and variants have been widely used in

applications. Recent examples include graph embedding [70], word

& image embedding [2, 17, 62, 75, 76], model & communication

compression [18, 31, 46, 60, 69], privacy [42], etc. Note that in many

applications, only𝑚 = 1 repetition is used. Our analysis extends

to𝑚 > 1. In fact, we can recover “very sparse random projections”

(VSRP) [45] if we let𝑚 > 1 (and 𝑘 = 1, i.e., using just one bin).

1.2 (Very Sparse) Random Projection
The work of OPORP is closely related to random projections (RP),

especially “sparse” or “very sparse” random projections [1, 45]. The

basic idea of random projections is to multiply the original data

vectors, e.g., 𝑢 ∈ R𝐷 with a random matrix 𝑅 ∈ R𝐷×𝑘
to generate

new vectors, e.g., 𝑥 ∈ R𝑘 , as samples from which we can recover

the original similarities (e.g., the inner products or cosines). The

entries of the random matrix 𝑅 are typically sampled i.i.d. from

the standard Gaussian distribution or the Rademacher distribution.

The projection matrix can also be made (very) sparse to facilitate

computations. For instance, the entries in 𝑅 take values in {−1, 0, 1}
with probabilities {1/(2𝑠), 1 − 1/𝑠, 1/(2𝑠)}, and we can control the

sparsity by altering 𝑠 . In many cases, 𝑅 can be considerably sparse

while maintaining good learning capacity/utility. For example, in

our experiments (Section 4), the performance does not drop much

when the projection matrix contains around 90% zeros (i.e., 𝑠 = 10).

As an effective tool for dimensionality reduction and geometry

preservation, the methods of (very sparse) random projections have

been widely adopted by numerous applications in data mining,

learning, computational biology, databases, compressed sensing,

etc. [1, 5, 11, 12, 16, 21–23, 26, 28, 30, 35, 45, 48–51, 57, 58, 67].

1.3 Our Contributions
OPORP differs from the standard count-sketch [15] in that: (i) we

use a fixed-length binning scheme; (ii) we adopt a normaliza-
tion step in the estimation stage. Compared with the previous

works [43, 46, 69] which used count-sketch type data structures for

building large-scale machine learning models, the normalization

step significantly reduces the estimation variance, as shown by our

theoretical analysis. In addition, the fixed-binning scheme brings in

a multiplicative term
𝐷−𝑘
𝐷−1 in the variance (𝑘 is the number of bins

in OPORP) which also substantially reduces the estimation error

when (e.g.,) 𝑘 = 𝐷/4. Experiments on retrieval and classification

are provided in Section 4 to validate the advantage of OPORP.

In general, OPORP and VSRP (very sparser random projections)

are two examples of the general family of sparse random projec-

tions. We can utilize OPORP to recover VSRP. Basically, by using

𝑚 repetitions for OPORP and letting the 𝑘 (number of bins) to be

𝑘 = 1, we exactly recover VSRP with𝑚 projections. This means

that the theory we develop for OPORP directly applies to VSRP.

In particular, we immediately obtain the normalized estimator for

VSRP and its theoretical variance. The normalized estimator of

VSRP again substantially improves the un-normalized estimator.

2 THE PROPOSED ALGORITHM OF OPORP
As the name “OPORP” suggests, the proposed algorithm mainly

consists of applying “one permutation” then “one random projec-

tion” on the data vectors ∈ R𝐷 , for the purpose of reducing the

dimensionality, the memory/disk space, and the computational cost.

The dimensionality 𝐷 varies significantly, depending on applica-

tions. As discussed in Section 1, for embedding vectors generated

from learning models, using 𝐷 = 256 ∼ 1024 is fairly common,

although some applications use 𝐷 = 8192 or even larger. As long

as the embedding size 𝐷 is not too large, it is affordable (and con-

venient) to simply generate and store the permutation vector and

the random projection vector. In fact, even when 𝐷 is as large as a

billion (𝐷 = 10
9
), storing two 𝐷-dimensional dense vectors is often

affordable. On the other hand, for applications which need𝐷 ≫ 10
9
,

we might have to resort to various approximations to generate/store

the permutation/projection vectors such as the standard “univer-

sal hashing” [13]. In particular, in the literature of minwise hash-

ing [7–9, 16, 34, 41, 46, 47], there are abundance of discussions about

generating permutations in extremely high-dimensional space.

2.1 The Procedure of OPORP

In summary, the procedure of OPORP has the following steps:

• Generate a permutation 𝜋 : [𝐷] −→ [𝐷].
• Apply the same permutation to all vectors, e.g., 𝑢, 𝑣 ∈ R𝐷 .
• Generate a random vector 𝑟 of size 𝐷 , with i.i.d. entries 𝑟𝑖 of

the following first four moments:

𝐸 (𝑟𝑖 ) = 0, 𝐸 (𝑟2𝑖 ) = 1, 𝐸 (𝑟3𝑖 ) = 0, 𝐸 (𝑟4𝑖 ) = 𝑠 . (3)

We show that 𝑠 = 1 leads to the smallest variance. We carry

out the calculations for general 𝑠 , for the convenience of

comparing with “very sparse random projections” [45].

• Divide the𝐷 columns into𝑘 bins.Wewill study the following

two binning strategies:

1) Fixed-length binning scheme: every bin has a length of

𝐷/𝑘 . We assume 𝐷 is divisible by 𝑘 , if not, we can always

pad zeros. Our analysis will show that using this fixed-

length scheme results in a variance reduction by a factor

of
𝐷−𝑘
𝐷−1 , which is quite significant for typical EBR appli-

cations, compared to the commonly-analyzed variable-

length binning scheme of count-sketch.

2) Variable-length binning scheme: the bin lengths follow a

multinomial distribution𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝐷, 1/𝑘, 1/𝑘, ...., 1/𝑘)
with 𝑘 bins. Note that 𝑘 can be larger than 𝐷 , i.e., some

bins will be empty. The variable-length binning scheme is

the strategy in the previous literature [15, 43, 46, 69].

• For each bin, we generate a sample as follows:

𝑥 𝑗 =

𝐷∑︁
𝑖=1

𝑢𝑖𝑟𝑖 𝐼𝑖 𝑗 , 𝑦 𝑗 =

𝐷∑︁
𝑖=1

𝑣𝑖𝑟𝑖 𝐼𝑖 𝑗 , 𝑗 = 1, 2, ..., 𝑘, (4)

where 𝐼𝑖 𝑗 is an indicator: 𝐼𝑖 𝑗 = 1 if the original coordinate

𝑖 is mapped to bin 𝑗 , and 𝐼𝑖 𝑗 = 0 otherwise. As there are

two binning schemes, wherever necessary, we will use 𝐼1,𝑖 𝑗
(fixed-length) and 𝐼2,𝑖 𝑗 (variable-length) to differentiate them.
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After obtaining the samples (𝑥 𝑗 , 𝑦 𝑗 ), we estimate the inner prod-

uct 𝑎, 𝑙2 distance 𝑑 , and cosine 𝜌 of the original data vectors as:

𝑎 =

𝑘∑︁
𝑗=1

𝑥 𝑗𝑦 𝑗 , ˆ𝑑 =

𝑘∑︁
𝑗=1

|𝑥 𝑗 − 𝑦 𝑗 |2, 𝜌 =

∑𝑘
𝑗=1 𝑥 𝑗𝑦 𝑗√︃∑𝑘

𝑗=1 𝑥
2

𝑗

√︃∑𝑘
𝑗=1 𝑦

2

𝑗

. (5)

Note that, for 𝜌 , the normalization step is not needed at the esti-

mation time if we pre-normalize the samples, e.g., 𝑥 ′
𝑗
=

𝑥 𝑗√︃∑𝑘
𝑡=1 𝑥

2

𝑡

.

Again, wherever necessary, we will use 𝑎1, 𝑎2, ˆ𝑑1, ˆ𝑑2, 𝜌1, 𝜌2, to dif-

ferentiate two binning schemes. If the original data vectors (𝑢, 𝑣) are

normalized, then 𝑎 also provides an estimate of the cosine because

the original inner product is identical to the cosine in normalized

data. One major contribution in this paper is to show that using 𝜌

would be substantially more accurate than using 𝑎 even when the

original data are already normalized. Basically, the variance of 𝜌

is proportional to (1 − 𝜌2)2 while the variance of 𝑎 (in normalized

data) is proportional to 1 + 𝜌2. The difference between (1 − 𝜌2)2
and 1 + 𝜌2 can be highly substantial, especially for |𝜌 | close to 1.

2.2 The Choice of 𝑟
For the random projection vector 𝑟 ∈ R𝐷 , we have only specified

that its entries are i.i.d. and obey the following moment conditions:

𝐸 (𝑟𝑖 ) = 0, 𝐸 (𝑟2𝑖 ) = 1, 𝐸 (𝑟3𝑖 ) = 0, 𝐸 (𝑟4𝑖 ) = 𝑠, 𝑠 ≥ 1.

Note that 𝑠 ≥ 1 is needed because 𝐸 (𝑟4
𝑖
) ≥ 𝐸2 (𝑟2

𝑖
) = 1. Readers

who are familiar with random projections might attempt to sample

𝑟 from the Gaussian distribution. Our analysis, however, will show

that the Gaussian should not be used for OPORP. This is quite

different from the standard random projections for which using

either the Gaussian distribution or the Rademacher distribution (i.e.,

𝑟𝑖 ∈ {−1, +1} with equal probabilities) would not make an essential

difference. For OPORP, our analysis will show that we need 𝑠 = 1

(i.e., the Rademacher distribution) to achieve a small estimation

variance, by carrying out the calculations for general 𝑠 ≥ 1.

Here, we list some common distributions as follows:

• The standard Gaussian distribution 𝑁 (0, 1). This is the popu-
lar choice in the literature of random projections. The fourth

moment of the standard Gaussian is 3, i.e., 𝑠 = 3.

• The uniform distribution,

√
3 × 𝑢𝑛𝑖 𝑓 [−1, 1]. We need the√

3 factor in order to have 𝐸 (𝑟2
𝑖
) = 1. For this choice of

distribution, we have 𝐸 (𝑟4
𝑖
) = 𝑠 = 9/5.

• The “very sparse” distribution, as used in Li et al. [45]:

𝑟𝑖 =
√
𝑠 ×


−1 with prob. 1/(2𝑠),
0 with prob. 1 − 1/𝑠,

+1 with prob. 1/(2𝑠),
(6)

which generalizes Achlioptas [1] (for 𝑠 = 1 and 𝑠 = 3).

2.3 Comparison: OPORP versus VSRP
Even though OPORP only effectively uses one random projection,

we can still view that as a random projection “matrix” ∈ R𝐷×𝑘
with

exactly one 1 on each row. In comparison, the “very sparse random

projections” (VSRP) [45] uses a random projection matrix ∈ R𝐷×𝑘

with entries sampled i.i.d. from the “very sparse” distribution (6).

Interestingly, for VSRP, if we let its “𝑠” parameter to be 𝑠 = 𝑘 , then

OPORP (with its 𝑠 = 1) and VSRP will have the same sparsity on

average in the projection “matrix”. In terms of implementation,

suppose we store the projection matrix, then it would be more

convenient to store the one projection vector for OPORP because it

is really just a vector of length 𝐷 . In comparison, storing the sparse

random projection matrix would incur an overhead because we

have to store the locations (coordinates) of each non-zero entries.

In terms of the estimation variance, OPORP (with 𝑠 = 1) would

be more accurate than VSRP. Firstly, OPORP with the fixed-length

binning scheme has the
𝐷−𝑘
𝐷−1 variance reduction term. Secondly,

if we do not consider the
𝐷−𝑘
𝐷−1 term and we choose 𝑠 = 1 for both

OPORP and VSRP, then their theoretical variances are identical.

As long as 𝑠 > 1 for VSRP, the theoretical variance is larger than

that of OPORP (for 𝑠 = 1). If we choose 𝑠 = 𝑘 for VSRP (to achieve

the same average sparsity as OPORP), then its variance might be

significantly larger, depending on the original data (e.g., 𝑢 and 𝑣).

As mentioned, we can actually recover VSRP if we just use one

bin for OPORP and repeat the procedure 𝑘 times. This means that

theory and estimatorswe develop for OPORP can be directly utilized

to develop new theory and new estimator for VSRP. In particular,

the normalized estimator for VSRP is developed whose variance

can be directly inferred from the variance of OPORP.

3 THEORETICAL ANALYSIS OF OPORP AND
NUMERICAL VERIFICATION

In this section, we conduct the theoretical analysis to derive the

estimation variances for OPORP. Recall that, we generate 𝑘 samples

𝑥 𝑗 =

𝐷∑︁
𝑖=1

𝑢𝑖𝑟𝑖 𝐼𝑖 𝑗 , 𝑦 𝑗 =

𝐷∑︁
𝑖=1

𝑣𝑖𝑟𝑖 𝐼𝑖 𝑗 , 𝑗 = 1, 2, ..., 𝑘

where 𝐼𝑖 𝑗 is a random variable determined by one of the following

two binning schemes:

(1) (First binning scheme) The fixed-length binning scheme: ev-

ery bin has a length of 𝐷/𝑘 . We assume that 𝐷 is divisible

by 𝑘 , if not, we can pad zeros. This is convenient in practice.

(2) (Second binning scheme) The variable-length binning scheme:

as in the literature [15, 43, 46, 69], the bin lengths follow a

multinomial distribution𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝐷, 1/𝑘, 1/𝑘, ...., 1/𝑘).
Specifically, 𝐼𝑖 𝑗 = 1 if the original coordinate 𝑖 ∈ [1, 𝐷] is mapped

to bin 𝑗 ∈ [1, 𝑘]; 𝐼𝑖 𝑗 = 0 otherwise. Wherever necessary, we will

use 𝐼1,𝑖 𝑗 and 𝐼2,𝑖 𝑗 to differentiate the two binning schemes. We have

the following Lemma regarding the useful proprieties of 𝐼𝑖 𝑗 .

Lemma 3.1. For ∀𝑖 ∈ [1, 𝐷], 𝑗 ∈ [1, 𝑘], 𝑖 ≠ 𝑖′, 𝑗 ≠ 𝑗 ′, we have

𝐸 (𝐼1,𝑖 𝑗 ) = 𝐸 (𝐼𝑛
1,𝑖 𝑗 ) = 𝐸 (𝐼2,𝑖 𝑗 ) = 𝐸 (𝐼𝑛

2,𝑖 𝑗 ) =
1

𝑘
, 𝑛 = 1, 2, 3, ...,

𝐸 (𝐼1,𝑖 𝑗 𝐼1,𝑖 𝑗 ′ ) = 0, 𝐸 (𝐼2,𝑖 𝑗 𝐼2,𝑖 𝑗 ′ ) = 0,

𝐸 (𝐼1,𝑖 𝑗 𝐼1,𝑖′ 𝑗 ′ ) =
𝐷

𝐷 − 1

1

𝑘2
, 𝐸 (𝐼2,𝑖 𝑗 𝐼2,𝑖′ 𝑗 ′ ) =

1

𝑘2
,

𝐸 (𝐼1,𝑖 𝑗 𝐼1,𝑖′ 𝑗 ) =
𝐷 − 𝑘

𝐷 − 1

1

𝑘2
, 𝐸 (𝐼2,𝑖 𝑗 𝐼2,𝑖′ 𝑗 ) =

1

𝑘2
,

𝑘𝐸
(
𝐼𝑖 𝑗 𝐼𝑖′ 𝑗

)
+ 𝑘 (𝑘 − 1)𝐸

(
𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ′

)
= 1.
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Proof of Lemma 3.1: Consider the first binning scheme, where

all 𝑘 bins have the same length 𝐷/𝑘 . Thus, 𝐸 (𝐼𝑛
1,𝑖 𝑗

) = 𝐸 (𝐼1,𝑖 𝑗 ) =

𝐷/𝑘
𝐷

= 1

𝑘
. Each coordinate 𝑖 can only be mapped to one bin, hence

𝐸 (𝐼1,𝑖 𝑗 𝐼1,𝑖 𝑗 ′ ) = 0,∀𝑗 ≠ 𝑗 ′. To understand 𝐸 (𝐼1,𝑖 𝑗 𝐼1,𝑖′ 𝑗 ′ ) = 1

𝑘

𝐷/𝑘
𝐷−1 =

𝐷
𝐷−1

1

𝑘2
, we first assign 𝑖 to 𝑗 which occurs with probability 1/𝑘 ;

then assign 𝑖′ to 𝑗 ′, which occurs with probability
𝐷/𝑘
𝐷−1 because

the bin length is 𝐷/𝑘 and there are 𝐷 − 1 locations left (as one is

taken). Finally, to understand 𝐸 (𝐼1,𝑖 𝑗 𝐼1,𝑖′ 𝑗 ) = 1

𝑘

𝐷/𝑘−1
𝐷−1 = 𝐷−𝑘

𝐷−1
1

𝑘2
,

we only have 𝐷/𝑘 −1 (instead of 𝐷/𝑘) choices because one location
in bin 𝑗 is already taken. For the second binning scheme, as the 𝑘

bin lengths follow the multinomial distribution, the results follow

using properties of multinomial moments after some algebra. □

3.1 The Un-normalized Estimators
Once we have samples 𝑥 𝑗 , 𝑦 𝑗 , we can estimate the original inner

product 𝑎 by 𝑎 =
∑𝑘

𝑗=1 𝑥 𝑗𝑦 𝑗 . The results in Lemma 3.1 can assist us

to derive the variances of the inner product estimators, 𝑎1 and 𝑎2
for two binning schemes, respectively.

Theorem 3.2.

𝐸 (𝑎) = 𝑎,

𝑉𝑎𝑟 (𝑎1) = (𝑠 − 1)
𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖 +
1

𝑘

(
𝑎2 +

𝐷∑︁
𝑖=1

𝑢2𝑖

𝐷∑︁
𝑖=1

𝑣2𝑖 − 2

𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖

)
𝐷 − 𝑘

𝐷 − 1

,

𝑉𝑎𝑟 (𝑎2) = (𝑠 − 1)
𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖 +
1

𝑘

(
𝑎2 +

𝐷∑︁
𝑖=1

𝑢2𝑖

𝐷∑︁
𝑖=1

𝑣2𝑖 − 2

𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖

)
.

Proof of Theorem 3.2: See Appendix A. □

Compared to𝑉𝑎𝑟 (𝑎2) for the variable-bin-length scheme (which

appeared in the prior work [46]), the additional factor
𝐷−𝑘
𝐷−1 in

𝑉𝑎𝑟 (𝑎1) demonstrates the benefit of the proposed fixed-bin-length

strategy. Also, it is clear that we should choose 𝑠 = 1. What if

we only use one bin, i.e., 𝑘 = 1? In this case
𝐷−𝑘
𝐷−1 = 1, i.e., two

binning scheme becomes identical. This is of course expected and

also explains why in
𝐷−𝑘
𝐷−1 we have 𝐷 − 1 instead of just 𝐷 .

What will happen if we repeat OPORP𝑚 times? In that case, the

variances will be reduced by a factor of
1

𝑚 , i.e.,

𝑉𝑎𝑟 (𝑎1;𝑚 repetitions)

=
1

𝑚

[
(𝑠 − 1)

𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖 +
1

𝑘

(
𝑎2 +

𝐷∑︁
𝑖=1

𝑢2𝑖

𝐷∑︁
𝑖=1

𝑣2𝑖 − 2

𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖

)
𝐷 − 𝑘

𝐷 − 1

]
,

𝑉𝑎𝑟 (𝑎2;𝑚 repetitions)

=
1

𝑚

[
(𝑠 − 1)

𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖 +
1

𝑘

(
𝑎2 +

𝐷∑︁
𝑖=1

𝑢2𝑖

𝐷∑︁
𝑖=1

𝑣2𝑖 − 2

𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖

)]
.

Furthermore, if we let 𝑘 = 1 and still repeat𝑚 times, then the two

estimators become the same one and the variance would be

𝑉𝑎𝑟 (𝑎;𝑚 repetitions and 𝑘 = 1)

=
1

𝑚

(
𝑎2 +

𝐷∑︁
𝑖=1

𝑢2𝑖

𝐷∑︁
𝑖=1

𝑣2𝑖 + (𝑠 − 3)
𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖

)
,

which is exactly the variance formula for the inner product esti-

mator of “very sparse random projections” (VSRP) [45]. This is

expected because with 𝑘 = 1 for OPORP and 𝑚 repetitions, we

recover the regular random projections with a projection matrix of

size 𝐷 ×𝑚. We can also change the notation from 𝐷 ×𝑚 to 𝐷 × 𝑘 .

Once we have the variances for the inner products, it is straight-

forward to derive the variances for the distance estimators:

ˆ𝑑 =

𝑘∑︁
𝑗=1

|𝑥 𝑗 − 𝑦 𝑗 |2 =
𝑘∑︁
𝑗=1

����� 𝐷∑︁
𝑖=1

𝑢𝑖𝑟𝑖 𝐼𝑖 𝑗 −
𝐷∑︁
𝑖=1

𝑣𝑖𝑟𝑖 𝐼𝑖 𝑗

�����2 = 𝑘∑︁
𝑗=1

����� 𝐷∑︁
𝑖=1

(𝑢𝑖 − 𝑣𝑖 )𝑟𝑖 𝐼𝑖 𝑗

�����2 .
Clearly, we just need to replace, in Theorem 3.2, both 𝑢𝑖 and 𝑣𝑖 by

𝑢𝑖 − 𝑣𝑖 , in order to derive Theorem 3.3.

Theorem 3.3.

𝐸 ( ˆ𝑑) = 𝑑,

𝑉𝑎𝑟 ( ˆ𝑑1) = (𝑠 − 1)
𝐷∑︁
𝑖=1

|𝑢𝑖 − 𝑣𝑖 |4 +
1

𝑘

(
2𝑑2 − 2

𝐷∑︁
𝑖=1

|𝑢𝑖 − 𝑣𝑖 |4
)
𝐷 − 𝑘

𝐷 − 1

,

𝑉𝑎𝑟 ( ˆ𝑑2) = (𝑠 − 1)
𝐷∑︁
𝑖=1

|𝑢𝑖 − 𝑣𝑖 |4 +
1

𝑘

(
2𝑑2 − 2

𝐷∑︁
𝑖=1

|𝑢𝑖 − 𝑣𝑖 |4
)
.

In the variance formulas, the term
𝐷−𝑘
𝐷−1 of the fixed-length bin-

ning scheme, would be beneficial if 𝑘 is a considerable fraction of

𝐷 . This is possible in EBR (embedding-based retrieval) applications.

For example, when 𝐷 = 512 and 𝑘 = 128, we have
𝐷−𝑘
𝐷

= 0.75. A

variance reduction by 25% would be quite considerable. Also the

fixed-length binning scheme is actually easier to implement than

the variable-length binning scheme. Note that, with the fixed-length

scheme, we cannot choose a 𝑘 value between 𝐷/2 and 𝐷 .
Here, we provide a simulation study to verify Theorem 3.2 and

present the simulation results in Figure 1. For each panel (for a

specific target 𝜌) of Figure 1, we first generate two vectors from the

standard bivariate Gaussian distribution with the target correlation

𝜌 . To avoid ambiguity, we generate the vectors many times until

we have two vectors whose cosine value is very close to the tar-

get 𝜌 before we store the vectors. Otherwise the empirical cosine

value can be quite different from the target 𝜌 . After we generate

the two vectors, we normalize them to simplify the presentation

of the results because otherwise the results would be related to

the norms too. Then we conduct OPORP 10
5
times for each 𝑘 in

{2, 4, 8, 16, 32, ..., 𝐷/2}. For convenience, we choose 𝐷 to be powers

of 2. We only present results for 𝐷 = 1024 and 𝐷 = 64 because

the other plots are pretty similar. Note that for the variable-length

binning scheme, we also add simulations for 𝐷/2 < 𝑘 < 𝐷 .

We report the simulations for both 𝑠 = 1 and 𝑠 = 3. In each

panel, we plot four curves: the empirical mean square errors (MSE

= variance + bias
2
) for both binning schemes, and the theoretical

variance curves (in dashed lines) for both binning schemes. The

dashed lines are not visible because they overlap with the empirical

MSEs, which verify that the correctness of the variance formulas.

We can also see that, with the fixed-length binning scheme (Bin#1),

the variance is noticeably smaller than the variance of the variable-

length scheme at the same 𝑘 , confirming the benefits due to the

𝐷−𝑘
𝐷−1 term. Note that for 𝑠 = 3, the difference between the two

binning scheme becomes smaller, because in the formulas the
𝐷−𝑘
𝐷−1

term does not apply to the term involving (𝑠 − 1).
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Figure 1: In each panel, we simulated two (normalized) vec-
tors with the target 𝜌 value. Then we conduct OPORP 10

5

times for each 𝑘 , and both binning schemes. In each panel,
the two solid curves represent the empirical mean square
errors (MSE) and the two dashed curves for the theoretical
variances. The dashed curves are not visible because they
overlap with the solid curves. For the fixed-length binning
scheme (“Bin #1”), we cannot choose a 𝑘 between 𝐷/2 and 𝐷 .

3.2 The Normalized Estimators
One can (substantially) improve the estimation accuracy via the

“normalization” trick. That is, once we have the samples (𝑥 𝑗 , 𝑦 𝑗 ),

𝑗 = 1, 2, ..., 𝑘 , we can use the following normalized estimator:

𝜌 =

∑𝑘
𝑗=1 𝑥 𝑗𝑦 𝑗√︃∑𝑘

𝑗=1 𝑥
2

𝑗

√︃∑𝑘
𝑗=1 𝑦

2

𝑗

.

Again, we use 𝜌1 and 𝜌2 to denote the estimates for the fixed-length

binning and variable-length binning, respectively. As explained

earlier, the normalization step will not be needed at the estimation

time if we pre-normalize the samples, a recommended practice.

Theorem 3.4. For large 𝑘 , 𝜌 converges to 𝜌 , almost surely, with

𝑉𝑎𝑟 (𝜌1) =(𝑠 − 1)𝐴 +
{
1

𝑘

[
(1 − 𝜌2)2 − 2𝐴

]
+𝑂

(
1

𝑘2

)}
𝐷 − 𝑘

𝐷 − 1

,

𝑉𝑎𝑟 (𝜌2) =(𝑠 − 1)𝐴 +
{
1

𝑘

[
(1 − 𝜌2)2 − 2𝐴

]
+𝑂

(
1

𝑘2

)}
.

where

𝐴 =

𝐷∑︁
𝑖=1

(
𝑢′𝑖 𝑣

′
𝑖 − 𝜌/2(𝑢′𝑖

2 + 𝑣 ′𝑖
2)

)
2

, 𝑢′𝑖 =
𝑢𝑖√︃∑𝐷
𝑡=1 𝑢

2

𝑡

, 𝑣 ′𝑖 =
𝑣𝑖√︃∑𝐷
𝑡=1 𝑣

2

𝑡

.

Proof of Theorem 3.4: See Appendix B. □
The variances in Theorem 3.4 hold for large 𝑘 (i.e., 𝑘 → 𝐷 for the

fixed-length binning and 𝑘 → ∞ for the variable-length binning).

Note that the term
1

𝑘

(
1 − 𝜌2

)
2

inside the variances of 𝜌 is exactly

the classical asymptotic variance of the correlation estimator for the

bivariate Gaussian distribution [3]. Because 𝐴 ≥ 0, we know that

OPORP achieves smaller (asymptotic) variance than the classical

estimator in statistics, even without considering the
𝐷−𝑘
𝐷−1 factor.
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Figure 2: Empirical biases (𝐸 (𝜌) − 𝜌) of the normalized esti-
mator 𝜌 as well as the un-normalized estimator 𝑎, evaluated
on the same normalized data vectors in Figure 1, for 𝑠 = 1

and the fixed-length binning scheme. The empirical biases
are very small (and bias2 would be much smaller).

A simulation study presented in Figure 2 and Figure 3 shows

that 𝑘 does not need to be large in order for these variance formulas

to be sufficiently accurate.

In Figure 2 and Figure 3, we use the same data vectors as in

Figure 1, for 𝑠 = 1 and only the fixed-length binning scheme. Recall

that those generated vectors are already normalized, and hence the

inner product is the same as the cosine. This makes it convenient

to present both the un-normalized and normalized estimators on

the same plot. Recall MSE = variance + bias
2
. Figure 2 illustrates

that the variance formula in Theorem 3.4 is accurate, as long as

𝑘 is not too small. The biases are very small (and bias
2
would be

much smaller). The empirical MSE plots in Figure 3 confirm the

significant variance reduction due to the normalization step.

3.3 The Normalized Estimator for VSRP
We have explained how to recover “very sparse random projections”

(VSRP) [45] from OPORP by using 𝑘 = 1 and repeating OPORP𝑚

times. We can also take advantage of this finding to develop the

normalized estimator for VSRP and obtain its variance. To present

the estimator and its theory for VSRP, instead of introducing new

notation, we borrow the existing notation. Also, we still use 𝑘 for
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Figure 3: Empirical MSEs for both un-normalized and nor-
malized estimators of OPORP, for 𝑠 = 1 and the fixed-length
binning scheme, using the same data vectors as in Figure 1.
The normalization reduces the MSEs considerably especially
for large 𝜌 (i.e., higher similarity). The dashed curves for the
theoretical (asymptotic) variance of 𝜌 in Theorem 3.4 differ
slightly from the empirical MSEs (solid curves) if 𝑘 is small.

the sample size of VSRP instead of𝑚. That is, we have

𝑥 𝑗 =

𝐷∑︁
𝑖=1

𝑢𝑖𝑟𝑖 𝑗 , 𝑦 𝑗 =

𝐷∑︁
𝑖=1

𝑣𝑖𝑟𝑖 𝑗 , 𝑗 = 1, 2, ..., 𝑘 .

where 𝑟𝑖 𝑗 follows the sparse distribution parameterized by 𝑠:

𝑟𝑖 𝑗 =
√
𝑠 ×


−1 with prob. 1/(2𝑠)
0 with prob. 1 − 1/𝑠

+1 with prob. 1/(2𝑠)
Wehave the un-normalized estimator for 𝑎 and the normalized for 𝜌 :

𝑎𝑣𝑠𝑟𝑝 =
1

𝑘

𝑘∑︁
𝑗=1

𝑥 𝑗𝑦 𝑗 , 𝜌𝑣𝑠𝑟𝑝 =

∑𝑘
𝑗=1 𝑥 𝑗𝑦 𝑗√︃∑𝑘

𝑗=1 𝑥
2

𝑗

√︃∑𝑘
𝑗=1 𝑦

2

𝑗

,

We have shown how to use the OPORP variance of 𝑎 to recover the

variance of 𝑎𝑣𝑠𝑟𝑝 , to be

𝑉𝑎𝑟 (𝑎𝑣𝑠𝑟𝑝 ) =
1

𝑘

(
𝑎2 +

𝐷∑︁
𝑖=1

𝑢2𝑖

𝐷∑︁
𝑖=1

𝑣2𝑖 + (𝑠 − 3)
𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖

)
.

Since the normalized estimator and its variance for VSRP are new

results, we present the result as a theorem.

Theorem 3.5. As 𝑘 → ∞, 𝜌𝑣𝑠𝑟𝑝 → 𝜌 almost surely, with

𝑉𝑎𝑟 (𝜌𝑣𝑠𝑟𝑝 ) =
1

𝑘

(
(1 − 𝜌2)2 + (𝑠 − 3)𝐴

)
+𝑂

(
1

𝑘2

)
,

where

𝐴 =

𝐷∑︁
𝑖=1

(
𝑢′𝑖 𝑣

′
𝑖 − 𝜌/2(𝑢′𝑖

2 + 𝑣 ′𝑖
2)

)
2

, 𝑢′𝑖 =
𝑢𝑖√︃∑𝐷
𝑡=1 𝑢

2

𝑡

, 𝑣 ′𝑖 =
𝑣𝑖√︃∑𝐷
𝑡=1 𝑣

2

𝑡

.

One way to compare VSRP (for general 𝑠) with OPORP (for 𝑠 = 1

and𝑚 = 1 repetition), is to evaluate the ratios of variances:

𝑉𝑎𝑟 (𝑎𝑣𝑠𝑟𝑝,𝑠 )
𝑉𝑎𝑟 (𝑎) ≈

∑𝐷
𝑖=1 𝑢

2

𝑖

∑𝐷
𝑖=1 𝑣

2

𝑖
+ 𝑎2 + (𝑠 − 3)∑𝐷

𝑖=1 𝑢
2

𝑖
𝑣2
𝑖∑𝐷

𝑖=1 𝑢
2

𝑖

∑𝐷
𝑖=1 𝑣

2

𝑖
+ 𝑎2 − 2

∑𝐷
𝑖=1 𝑢

2

𝑖
𝑣2
𝑖

, (7)

𝑉𝑎𝑟 (𝜌𝑣𝑠𝑟𝑝,𝑠 )
𝑉𝑎𝑟 (𝜌) ≈ (1 − 𝜌2)2 + (𝑠 − 3)𝐴

(1 − 𝜌2)2 − 2𝐴
, (8)

where we use ≈ as we neglect the beneficial factor of
𝐷−𝑘
𝐷−1 . Obvi-

ously, when 𝑠 = 1, both ratios equal 1. The ratio increases with

increasing 𝑠 for VSRP. As the ratio is data-dependent, it is better

that we compute it using real data.
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Figure 4: Ratio of variances in (7) and (8) to compare VSRP
(parameterized by 𝑠) with OPORP (for its 𝑠 = 1), for both the
un-normalized (dashed) and normalized (solid) estimators,
on four word pairs from the “Words” dataset (see Table 1).

Figure 4 presents the variance ratios in (7) and (8) on four selected

word (vector) pairs from the “Words” dataset; see Table 1 for the

description of the data. In general, if the 𝑠 is not too large for VSRP

(e.g., 𝑠 < 10), then VSRP works pretty well. For larger 𝑠 , then

the performance of VSRP largely depends on data. For example,

on “SAN-FRANCISCO”, VSRP with the normalized estimator still

works well (the variance ratio is smaller than 2) if with 𝑠 = 200.

On “HONG-KONG”, however, VSRP does not perform well: for the

normalized estimator, the variance ratio > 4 when 𝑠 > 40; and for

the un-normalized estimator, the variance ratio > 4 when 𝑠 > 150.

The variance ratio = 4 means that we need to increase the sample

size of VSRP by a factor of 4 in order to maintain the same accuracy.

For VSRP with a the projection matrix size of size 𝐷 ×𝑘 , it will need
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Table 1: Summary statistics of word-pairs from the “Words”
dataset [41]. For example, “HONG” represents a vector of
length 2

16 with each entry being the number of times that
“HONG” appears in the collection of 216 documents.

word 1 word 2 𝜌 𝑎 =
∑𝐷
𝑖=1 𝑢𝑖𝑣𝑖

∑𝐷
𝑖=1 𝑢

2

𝑖

∑𝐷
𝑖=1 𝑣

2

𝑖

HONG KONG 0.9623 12967 13556 13395

WEEK MONTH 0.8954 281297 323073 305468

OF AND 0.8788 57219161 69006071 61437886

UNITED STATES 0.6693 69201 85934 124415

BEFORE AFTER 0.6633 59136 65541 121284

SAN FRANCISCO 0.5623 29386 125109 21832

GAMBIA KIRIBATI 0.5250 228 360 524

RIGHTS RESERVED 0.3949 14710 79527 17449

HUMAN NATURE 0.2992 14896 87356 28367

𝑠 = 𝑘 if we hope to achieve the same level of sparsity as OPORP.

Depending on applications, we typically observe that 𝑘 = 100 ∼ 500

might be sufficient for the standard (dense) random projections.

In summary, VSRP should work well in general if we use a

sparsity parameter 𝑠 around 10. VSRP may still perform well with a

much larger 𝑠 but then that will be data-dependent. In Section 4, the

experimental results on VSRP will also confirm the same finding.

3.4 The Inner Product Estimators
The simulations in Figure 1, Figure 2, and Figure 3 have used data

vectors which are normalized to the unit 𝑙2 norm, in part for the

convenience of presenting the plots. In many EBR applications,

the embedding vectors from learning models are indeed already

normalized. On the other hand, there are also numerous applica-

tions which use un-normalized data. In fact, the entire literature

about “maximum inner product search” (MIPS) [4, 59, 61, 66, 78]

is built on the fact that in many applications the norms are differ-

ent and the goal is to find the maximum inner products (instead

of the cosines). Also see Fan et al. [27] for the use of MIPS on

advertisement retrievals in a commercial search engine.

Recall that, with samples (𝑥 𝑗 , 𝑦 𝑗 ), 𝑗 = 1, ..., 𝑘 , we can estimate

the inner product 𝑎 by 𝑎 =
∑𝑘

𝑗=1 𝑥 𝑗𝑦 𝑗 . To improve the estima-

tion accuracy, we can utilize the normalized cosine estimator 𝜌 =∑𝑘
𝑗=1 𝑥 𝑗 𝑦 𝑗√︃∑𝑘

𝑗=1 𝑥
2

𝑗

√︃∑𝑘
𝑗=1 𝑦

2

𝑗

to have a “normalized inner product estimator”𝑎𝑛 :

𝑎𝑛 = 𝜌

√√√
𝐷∑︁
𝑖=1

𝑢2
𝑖

√√√
𝐷∑︁
𝑖=1

𝑣2
𝑖
,

whose variance is the scaled version of the variance of 𝜌 :

𝑉𝑎𝑟 (𝑎𝑛) = 𝑉𝑎𝑟 (𝜌)
𝐷∑︁
𝑖=1

𝑢2𝑖

𝐷∑︁
𝑖=1

𝑣2𝑖 .

Table 1 lists 9 word-pairs from the “Words” dataset [41]. Each

word represents a vector of length 2
16

and each entry records the

number of times that word appears in a collection of 2
16

documents.

The selected 9 pairs cover a wide range of sparsity and similarity.

Next, we compare the two inner product estimators 𝑎 and 𝑎𝑛 for

these 9 pairs of words. In order to provide a more complete picture,

we also add another estimator based on the (approximate) maximum

likelihood estimation (MLE). Because characterizing the exact joint

distribution of (𝑥 𝑗 , 𝑦 𝑗 ), 𝑗 = 1, 2, ..., 𝑘 would be too complicated, we

resort to the MLE for the standard Gaussian random projections, as

studied in Li et al. [44]. Basically, they show that the MLE estimator

𝑎𝑚 is the solution to the following cubic equation:

𝑎3𝑚 − 𝑎2𝑚

𝑘∑︁
𝑗=1

𝑥 𝑗𝑦 𝑗 −
𝐷∑︁
𝑖=1

𝑢2𝑖

𝐷∑︁
𝑖=1

𝑣2𝑖

𝑘∑︁
𝑗=1

𝑥 𝑗𝑦 𝑗

+ 𝑎𝑚
©«−

𝐷∑︁
𝑖=1

𝑢2𝑖

𝐷∑︁
𝑖=1

𝑣2𝑖 +
𝐷∑︁
𝑖=1

𝑢2𝑖

𝑘∑︁
𝑗=1

𝑦2𝑗 +
𝐷∑︁
𝑖=1

𝑣2𝑖

𝑘∑︁
𝑗=1

𝑥2𝑗
ª®¬ = 0.

The MLE has the smallest variance if

∑𝐷
𝑖=1 𝑢

2

𝑖
and

∑𝐷
𝑖=1 𝑣

2

𝑖
are

known. Obviously, the estimator 𝑎𝑚 can no longer be written as an

inner product (i.e., 𝑎𝑚 is not a valid kernel for machine learning),

unlike 𝑎 or 𝜌 or 𝑎𝑛 . Nevertheless, we can still use the MLE to assess

the accuracy of estimators to see how close they are to be optimal.

Although we do not have the exact MLE for OPORP, we still use

the above cubic equation as the “surrogate” for the MLE of OPORP

and plot the empirical MSEs together with the MSEs of 𝑎 and 𝑎𝑛 in

Figure 5, for estimating the inner products of the 9 word-pairs in

Table 1. Each panel of Figure 5 presents 5 curves: the empirical MSEs

for 𝑎, 𝑎𝑛 , and 𝑎𝑚 , and the theoretical variances for 𝑎 and 𝑎𝑛 . As

expected, for 𝑎 (the un-normalized estimator), the empirical MSEs

overlap with the theoretical variances. The normalized estimator 𝑎𝑛
is considerably more accurate than the un-normalized estimator 𝑎,

especially for word pairs with higher similarities. Also, for 𝑎𝑛 , the
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Figure 5: We estimate the inner products of the 9 pairs of
words in Table 1, using the un-normalized estimator 𝑎, the
normalized estimator 𝑎𝑛 , as well as the approximate MLE
estimator 𝑎𝑚 . We also plot, as dashed curves, the theoretical
variances for 𝑎 and 𝑎𝑛 . As expected, for 𝑎, the empirical MSEs
overlap with the theoretical variances. The normalized esti-
mator 𝑎𝑛 is considerably more accurate than 𝑎, especially for
word pairs with higher similarities. Also, for 𝑎𝑛 , the empiri-
cal MSEs do not differ much from the theoretical asymptotic
variances. The “approximate MLE” 𝑎𝑚 is still more accurate
than 𝑎𝑛 , although the differences are quite small.
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empirical MSEs do not differ much from the theoretical asymptotic

variances, although they do not fully overlap. Interestingly, the

“approximate MLE” 𝑎𝑚 is still more accurate than the normalized

estimator 𝑎𝑛 , although the differences are quite small.

Finally, Figure 6 compares VSRP (for its 𝑠 ∈ {1, 10, 30, 100, 200})
with OPORP, for both the normalized and un-normalize estimator,

using the “HONG-KONG” word pair. The plots confirm the the-

oretical result in Theorem 3.5. In this example, VSRP with 𝑠 = 1

has essentially the same MSEs as OPORP, as the theory predicts.

Note that in this case
𝐷−𝑘
𝐷−1 is too small to be able to help OPORP to

reduce the variance. As we increase 𝑠 for VSRP, the accuracy de-

grades quite substantially, again as predicted by the theory. We will

observe the similar pattern in the experimental study in Section 4.
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Figure 6: Comparing VSRP (with 𝑠 ∈ {1, 10, 30, 100, 200}) with
OPORP, in terms of their empirical MSEs, for both the un-
normalized (left) and normalized (right) estimators, for the
“HONG-KONG” word pair. As predicted by the theory, VSRP
with 𝑠 = 1 essentially has the same accuracy as OPORP.
Clearly, the normalized estimators are substantially more
accurate than the un-normalized estimators. For the un-
normalized VSRP estimator, the theoretical variance curves
(dashed) overlap the solid MSE curves (solid). For the nor-
malized VSRP estimator, the empirical MSEs slightly deviate
from the theoretical variances (in Theorem 3.5) for small 𝑘 .

4 EXPERIMENTS
For the sake of repeatability, we conduct experiments on two stan-

dard (small) datasets: the MNIST dataset with 60000 training sam-

ples and 10000 testing samples, and the ZIP dataset (zipcode) with

7291 training samples and 2007 testing samples. The data vectors

are normalized to have the unit 𝑙2 norm. The MNIST dataset has

784 features and the ZIP dataset has 256 features. These dimensions

well correspond with typical EBR embedding vector sizes.

4.1 Retrieval
We treat the test data as query vectors. For each query vector, we

compute/estimate the cosine similarities with all the data vectors in

the training set. For each estimation method, we rank the retrieved

data vectors according to the estimated cosine similarities. In other

words, there will be two ranked lists, one using the true cosines

and the other using estimated cosines. By walking down the lists,

we can compute the precision and recall curves. This allows us to

compare OPORP with VSRP and their various estimators.

Figure 7 presents the precision-recall curves for retrieving the

top-50 candidates on MNIST. The curves for top-10 are pretty simi-

lar. As expected, the OPORP normalized estimator performs much
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Figure 7: Precision-recall curves for MNIST (top-50) retrieval,
using estimated cosines from the OPORP normalized estima-
tor 𝜌 , the OPORP un-normalized estimator 𝑎 (note that the
original data are normalized), and the VSRP (parameterized
by 𝑠) inner product estimator for 𝑠 ∈ {1, 10, 50, 100}.
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Figure 8: The content is similar to Figure 7, but this time we
normalize the estimator of VSRP with 𝑠 ∈ {1, 10, 50, 100}.

better than the un-normalized inner product estimator of OPORP,

for all 𝑘 ∈ {32, 64, 128, 256}. The comparisons with VSRP (parame-

terized by 𝑠) are very interesting. Recall that VSRPwith 𝑠 = 1 has the

same variance as the un-normalized estimator of OPORP except for

the
𝐷−𝑘
𝐷−1 term. In Figure 7, it is clear that the un-normalized OPORP

estimator performs better than VSRP, which is due to the
𝐷−𝑘
𝐷−1

term. This effect is especially obvious for 𝑘 = 256 and 𝑘 = 128. By

increasing 𝑠 for VSRP, we can observe deteriorating performances.

In particular, when 𝑠 = 100 (i.e., the projection matrix of VSRP is

extremely sparse), the loss of accuracy might be unacceptable.

Figure 8 is quite similar to Figure 7 except that Figure 8 presents

the normalized inner product estimator of VSRP, again for 𝑠 ∈
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{1, 10, 50, 100}. Indeed, as already shown by theory, the normalized

estimator of VSRP improves the accuracy considerably. On the

other hand, we still observe that, when 𝑠 = 1 for VSRP, its accuracy

is slightly worse than OPORP (due to the
𝐷−𝑘
𝐷−1 factor); and when

𝑠 = 100, there is a severe deterioration of performance. Figure 8

once again confirms that the normalization trick is an excellent

tool, which ought to be taken advantage of.
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Figure 9: Precision-recall curves for ZIP (top-10) retrieval.
The left panels are analogous to Figure 7 and the right panels
are analogous to Figure 8 for MNIST retrieval.

Figure 9 presents the (top-10) retrieval experiments on the ZIP

dataset. The plots are analogous to the plots in Figure 7 and Figure 8,

with essentially the same conclusion. The normalized estimators

considerably improve their un-normalized counterparts, for both

VSRP and OPORP. There is more obvious gap between OPORP and

VSRP with 𝑠 = 1 because
𝐷−𝑘
𝐷−1 is quite small in for this dataset.

4.2 KNN classification
Figure 10 presents the experiments on KNN (K nearest neighbors)

classification, in particular 1-NN and 10-NN, for both MNIST and

ZIP datasets. We need the class labels for this set of experiments.

In each panel, the vertical axis represents the test classification

accuracy (in %). The original classification accuracy (the dashed

horizontal curve) is pretty high, but we can approach the same

accuracy with OPORP using the normalized estimator (with e.g.,

𝑘 ≥ 128 for MNIST and 𝑘 ≥ 64 for ZIP). The performance of the

un-normalized estimator of OPORP is considerably worse. Also,

OPORP improves VSRP with 𝑠 = 1 owing to the
𝐷−𝑘
𝐷−1 factor. Again,

using VSRP with large 𝑠 values leads to poor performance.
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Figure 10: 1-NN and 10-NN classification results using cosines.
The horizontal dashed lines represent the results using the
true cosines. The general trends are pretty much the same
as observed in the retrieval experiments in Figure 7. The
vertical axis is the test classification accuracy.

5 CONCLUSION
Computing or estimating the inner products (or cosines) is the

routine operation in numerous applications, not limited to ma-

chine learning. Reducing the storage/memory cost and speeding

up the computations for computing/estimating the inner products

or cosines can be crucial especially in many industrial applications

such as embedding-based retrieval (EBR) for search and advertising.

The “one permutation + one random projection” (OPORP) is a vari-

ant of count-sketch and is closely related to “very sparse random

projections” (VSRP). Compared to the standard random projec-

tions, OPORP is substantially more efficient (as it involves only

one projection) and also more accurate. It differs from the standard

count-sketch in that OPORP utilizes (i) the fixed-length binning
scheme; (ii) the normalized estimator of cosine and inner prod-

uct. We have conducted thorough variance analysis for OPORP (as

well as VSRP) for both un-normalized and normalized estimators.

Among many applications (e.g., AI model compression), this work

can be used as a key component in modern ANN (approximate near

neighbor search) systems. For example, Zhao et al. [77] developed

the GPU graph-based ANN and used random projections to reduce

memory cost when data do not fit in the memory. For large-scale

graph-based ANN methods [53, 78], the main cost is to compute

similarities on the fly. We can effectively compress the vectors using

OPORP to facilitate the distance computations at reduced storage.

OPORP and VSRP (“very sparse random projections”) [45] are two

examples of the family of sparse random projections. Our work on

OPORP naturally recovers the estimator and theory of VSRP. As a

“by-product”, we also develop the normalized estimator for VSRP.

OPORP can be further quantized just like quantized random pro-

jections [6, 16, 23, 25, 30, 37, 39, 40, 48, 50, 51, 63, 71, 79]. Another

major use of OPORP would be for the differential privacy (DP) [42].
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A PROOF OF THEOREM 3.2
For two data vectors 𝑢, 𝑣 ∈ R𝐷 , recall the notations of OPORP:

𝑎 =

𝑘∑︁
𝑗=1

𝑥 𝑗𝑦 𝑗 , 𝑥 𝑗 =

𝐷∑︁
𝑖=1

𝑢𝑖𝑟𝑖 𝐼𝑖 𝑗 , 𝑦 𝑗 =

𝐷∑︁
𝑖=1

𝑣𝑖𝑟𝑖 𝐼𝑖 𝑗 .

Assume the random variable 𝑟 admits 𝐸 (𝑟𝑖 ) = 0, 𝐸 (𝑟2
𝑖
) = 1, 𝐸 (𝑟3

𝑖
) =

0, 𝐸 (𝑟4
𝑖
) = 𝑠 . Firstly, for the mean, we have

𝐸 (𝑎) = 𝐸 (
𝑘∑︁
𝑗=1

𝑥 𝑗𝑦 𝑗 ) = 𝐸 (
𝑘∑︁
𝑗=1

𝐷∑︁
𝑖=1

𝑢𝑖𝑟𝑖 𝐼𝑖 𝑗

𝐷∑︁
𝑖=1

𝑣𝑖𝑟𝑖 𝐼𝑖 𝑗 )

= 𝐸 (
𝑘∑︁
𝑗=1

𝐷∑︁
𝑖=1

𝑢𝑖𝑣𝑖𝑟
2

𝑖 𝐼
2

𝑖 𝑗 +
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ) = 𝐸 (
𝑘∑︁
𝑗=1

𝐷∑︁
𝑖=1

𝑢𝑖𝑣𝑖
1

𝑘
) = 𝑎.

We can compute the second moment of 𝑎 as

𝐸 (𝑎2) = 𝐸 (
𝑘∑︁
𝑗=1

𝑥 𝑗𝑦 𝑗 )2 = 𝐸 (
𝑘∑︁
𝑗=1

𝐷∑︁
𝑖=1

𝑢𝑖𝑟𝑖 𝐼𝑖 𝑗

𝐷∑︁
𝑖=1

𝑣𝑖𝑟𝑖 𝐼𝑖 𝑗 )2

=𝐸 (
𝑘∑︁
𝑗=1

𝐷∑︁
𝑖=1

𝑢𝑖𝑣𝑖𝑟
2

𝑖 𝐼
2

𝑖 𝑗 +
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 )2

=

𝑘∑︁
𝑗=1

𝐸 (
𝐷∑︁
𝑖=1

𝑢𝑖𝑣𝑖𝑟
2

𝑖 𝐼
2

𝑖 𝑗 +
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 )2 +
∑︁
𝑗≠𝑗 ′

𝐸 (
𝐷∑︁
𝑖=1

𝑢𝑖𝑣𝑖𝑟
2

𝑖 𝐼
2

𝑖 𝑗

+
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ) (
𝐷∑︁
𝑖=1

𝑢𝑖𝑣𝑖𝑟
2

𝑖 𝐼
2

𝑖 𝑗 ′ +
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 ′ 𝐼𝑖′ 𝑗 ′ ). (9)

For the first term,𝐸 (∑𝐷
𝑖=1 𝑢𝑖𝑣𝑖𝑟

2

𝑖
𝐼2
𝑖 𝑗
+∑𝑖≠𝑖′ 𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 )2 =

𝑠
∑𝐷

𝑖=1 𝑢
2

𝑖 𝑣
2

𝑖

𝑘
+∑

𝑖≠𝑖′ (𝑢2𝑖 𝑣
2

𝑖′ + 2𝑢𝑖𝑣𝑖𝑢𝑖′𝑣𝑖′ )𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ). To see this calculation, we can

calculate three terms:

𝐸 (
𝐷∑︁
𝑖=1

𝑢𝑖𝑣𝑖𝑟
2

𝑖 𝐼
2

𝑖 𝑗 )
2 =𝐸 (

𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖 𝑟
4

𝑖 𝐼
4

𝑖 𝑗 ) + 𝐸 (
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖𝑟
2

𝑖 𝐼
2

𝑖 𝑗𝑢𝑖′𝑣𝑖′𝑟
2

𝑖′ 𝐼
2

𝑖′ 𝑗 )

=𝑠
1

𝑘

𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖 +
∑︁
𝑖≠𝑖′
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∑︁
𝑖≠𝑖′
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∑︁
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𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 )2

= 𝐸 [
∑︁
𝑖≠𝑖′

𝑢2𝑖 𝑣
2

𝑖′𝑟
2

𝑖 𝑟
2

𝑖′ 𝐼
2

𝑖 𝑗 𝐼
2

𝑖′ 𝑗 +
∑︁
𝑖<𝑖′

𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗

∑︁
𝑖<𝑖′

𝑢𝑖′𝑣𝑖𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ]

=
∑︁
𝑖≠𝑖′

𝑢2𝑖 𝑣
2

𝑖′𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ) +
∑︁
𝑖≠𝑖′

𝑢𝑖𝑢𝑖′𝑣𝑖𝑣𝑖′𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ),

and 𝐸 (∑𝐷
𝑖=1 𝑢𝑖𝑣𝑖𝑟

2

𝑖
𝐼2
𝑖 𝑗
) (∑𝑖≠𝑖′ 𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ) = 0, by noting that 𝑟𝑖 ’s

are i.i.d. and 𝐸 (𝑟𝑖 ) = 𝐸 (𝑟3
𝑖
) = 0. Next, we compute

𝐸 (
𝐷∑︁
𝑖=1

𝑢𝑖𝑣𝑖𝑟
2

𝑖 𝐼
2

𝑖 𝑗 +
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ) (
𝐷∑︁
𝑖=1

𝑢𝑖𝑣𝑖𝑟
2

𝑖 𝐼
2

𝑖 𝑗 ′ +
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 ′ 𝐼𝑖′ 𝑗 ′ )

= 𝐸 [
𝐷∑︁
𝑖=1

𝑢𝑖𝑣𝑖𝑟
2

𝑖 𝐼
2

𝑖 𝑗

𝐷∑︁
𝑖=1

𝑢𝑖𝑣𝑖𝑟
2

𝑖 𝐼
2

𝑖 𝑗 ′ +
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗

∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 ′ 𝐼𝑖′ 𝑗 ′ ]

= 𝑠

𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖 𝐸 (𝐼𝑖 𝑗 𝐼𝑖 𝑗 ′ ) +
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖𝑢𝑖′𝑣𝑖′𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ′ ) +
∑︁
𝑖≠𝑖′

𝑢2𝑖 𝑣
2

𝑖′𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 𝐼𝑖 𝑗 ′ 𝐼𝑖′ 𝑗 ′ )

+
∑︁
𝑖≠𝑖′

𝑢𝑖𝑢𝑖′𝑣𝑖𝑣𝑖′𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 𝐼𝑖 𝑗 ′ 𝐼𝑖′ 𝑗 ′ ) =
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖𝑢𝑖′𝑣𝑖′𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ′ ),

where we have used the fact that 𝐼𝑖 𝑗 𝐼𝑖 𝑗 ′ = 0 always. Now turning

back to (9), we obtain 𝐸 (𝑎2) = 𝑠
∑𝐷
𝑖=1 𝑢

2

𝑖
𝑣2
𝑖
+𝑘𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 )

∑
𝑖≠𝑖′ (𝑢2𝑖 𝑣

2

𝑖′ +
2𝑢𝑖𝑣𝑖𝑢𝑖′𝑣𝑖′ ) +𝑘 (𝑘 − 1)𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ′ )

∑
𝑖≠𝑖′ 𝑢𝑖𝑣𝑖𝑢𝑖′𝑣𝑖′ . Therefore, the vari-

ance can be expressed as (after some algebra)

𝑉𝑎𝑟 (𝑎) = 𝐸 (𝑎2) − 𝑎2

=(𝑠 − 1)
𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖 + 𝑘𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 )
∑︁
𝑖≠𝑖′

𝑢2𝑖 𝑣
2

𝑖′ + 𝑘𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 )
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖𝑢𝑖′𝑣𝑖′

=(𝑠 − 1)
𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖 + 𝑘𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ) [𝑎
2 +

𝐷∑︁
𝑖=1

𝑢2𝑖

𝐷∑︁
𝑖=1

𝑣2𝑖 − 2

𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖 ] .

The remaining part is to compute 𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ) for the two binning

schemes respectively using Lemma 3.1. □

B PROOF OF THEOREM 3.4
Recall the notations in OPORP:

𝑥 𝑗 =

𝐷∑︁
𝑖=1

𝑢𝑖𝑟𝑖 𝐼𝑖 𝑗 , 𝑦 𝑗 =

𝐷∑︁
𝑖=1

𝑣𝑖𝑟𝑖 𝐼𝑖 𝑗 , 𝑗 = 1, 2, ..., 𝑘 .

To analyze the normalized cosine estimator 𝜌 =

∑𝑘
𝑗=1 𝑥 𝑗 𝑦 𝑗√︃∑𝑘

𝑗=1 𝑥
2

𝑗

√︃∑𝑘
𝑗=1 𝑦

2

𝑗

,

it suffices to assume the original data are normalized to unit 𝑙2

norms, i.e.,

∑𝐷
𝑖=1 𝑢

2

𝑖
=

∑𝐷
𝑖=1 𝑣

2

𝑖
= 1. When the data are normalized,

the inner product and the cosine are the same, i.e., 𝑎 = 𝜌 . Thus,

𝐸 (
𝑘∑︁
𝑗=1

𝑥 𝑗𝑦 𝑗 ) = 𝜌, 𝐸 (
𝑘∑︁
𝑗=1

𝑥2𝑗 ) = 𝐸 (
𝑘∑︁
𝑗=1

𝑥2𝑗 ) = 1,

We express the “deviation” as

𝜌 − 𝜌 =

∑𝑘
𝑗=1 𝑥 𝑗𝑦 𝑗 − 𝜌√︃∑𝑘
𝑗=1 𝑥

2

𝑗

√︃∑𝑘
𝑗=1 𝑦

2

𝑗

+ 𝜌
1 −

√︃∑𝑘
𝑗=1 𝑥

2

𝑗

√︃∑𝑘
𝑗=1 𝑦

2

𝑗√︃∑𝑘
𝑗=1 𝑥

2

𝑗

√︃∑𝑘
𝑗=1 𝑦

2

𝑗

=

𝑘∑︁
𝑗=1

𝑥 𝑗𝑦 𝑗 − 𝜌/2
𝑘∑︁
𝑗=1

𝑥2𝑗 − 𝜌/2
𝑘∑︁
𝑗=1

𝑦2𝑗 +𝑂𝑃 (1/𝑘),

where we use the approximation that 1 − 𝑎𝑏 = (1 − 𝑎) + (1 − 𝑏) −
(1 − 𝑎) (1 − 𝑏) for 𝑎, 𝑏 ≈ 1. Hence, it suffices to analyze the term:

(
𝑘∑︁
𝑗=1

𝑥 𝑗𝑦 𝑗 − 𝜌/2
𝑘∑︁
𝑗=1

𝑥2𝑗 − 𝜌/2
𝑘∑︁
𝑗=1

𝑦2𝑗 )
2

(10)

=(
𝑘∑︁
𝑗=1

𝑥 𝑗𝑦 𝑗 )2 +
𝜌2

4

(
𝑘∑︁
𝑗=1

𝑥2𝑗 +
𝑘∑︁
𝑗=1

𝑦2𝑗 )
2 − 𝜌 (

𝑘∑︁
𝑗=1

𝑥 𝑗𝑦 𝑗 ) (
𝑘∑︁
𝑗=1

𝑥2𝑗 +
𝑘∑︁
𝑗=1

𝑦2𝑗 ) .

By Theorem 3.2, we know that 𝐸 (∑𝑘
𝑗=1 𝑥 𝑗𝑦 𝑗 )2 equals

= (𝑠 − 1)
𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖 + 𝑘𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ) [1 + 𝜌2 − 2

𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖 ] + 𝜌2, (11)

andwe canwrite𝐸 (∑𝑘
𝑗=1 𝑥

2

𝑗

∑𝑘
𝑗=1 𝑦

2

𝑗
) = 𝐸 (∑𝑘

𝑗=1 𝑥
2

𝑗
𝑦2
𝑗
+∑𝑘

𝑗≠𝑗 ′ 𝑥
2

𝑗
𝑦2
𝑗 ′ ).

We now calculate each term. First, we have for 𝑗 = 1, ..., 𝑘 ,

𝐸 (𝑥2𝑗𝑦
2

𝑗 ) = 𝑠
1

𝑘

𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖 + 𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 )
∑︁
𝑖≠𝑖′

(𝑢2𝑖 𝑣
2

𝑖′ + 2𝑢𝑖𝑣𝑖𝑢𝑖′𝑣𝑖′ ).
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Also, for 𝑗 ≠ 𝑗 ′, 𝐸 (𝑥2
𝑗
𝑦2
𝑗 ′ ) = 𝐸 (∑𝐷

𝑖=1 𝑢𝑖𝑟𝑖 𝐼𝑖 𝑗 )2 (
∑𝐷
𝑖=1 𝑣𝑖𝑟𝑖 𝐼𝑖 𝑗 ′ )2 =

𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ′ )
∑
𝑖≠𝑖′ 𝑢

2

𝑖
𝑣2
𝑖′ . Therefore, we obtain that

𝐸 (
𝑘∑︁
𝑗=1

𝑥2𝑗

𝑘∑︁
𝑗=1

𝑦2𝑗 ) = 𝑠

𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖 + 𝑘𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 )
∑︁
𝑖≠𝑖′

(𝑢2𝑖 𝑣
2

𝑖′ + 2𝑢𝑖𝑣𝑖𝑢𝑖′𝑣𝑖′ )

+ 𝑘 (𝑘 − 1)𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ′ )
∑︁
𝑖≠𝑖′

𝑢2𝑖 𝑣
2

𝑖′ .

Hence, 𝐸 (∑𝑘
𝑗=1 𝑥

2

𝑗
+ ∑𝑘

𝑗=1 𝑦
2

𝑗
)2 equals

= (𝑠 − 1)
𝐷∑︁
𝑖=1

(𝑢4𝑖 + 𝑣4𝑖 ) + 2𝑘𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ) [4 −
𝐷∑︁
𝑖=1

(𝑢4𝑖 + 𝑣4𝑖 )] + 2𝑠

𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖

+ 2𝑘𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 )
∑︁
𝑖≠𝑖′

(𝑢2𝑖 𝑣
2

𝑖′ + 2𝑢𝑖𝑣𝑖𝑢𝑖′𝑣𝑖′ ) + 2𝑘 (𝑘 − 1)𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ′ )
∑︁
𝑖≠𝑖′

𝑢2𝑖 𝑣
2

𝑖′ .

(12)

We now analyze the third term in (10). It holds that

𝐸 (
𝑘∑︁
𝑗=1

𝑥 𝑗𝑦 𝑗 ) (
𝑘∑︁
𝑗=1

𝑥2𝑗 +
𝑘∑︁
𝑗=1

𝑦2𝑗 )

= 𝐸 (
𝑘∑︁
𝑗=1

𝑥3𝑗𝑦 𝑗 +
∑︁
𝑗≠𝑗

𝑥 𝑗𝑦 𝑗𝑥
2

𝑗 ′ ) + 𝐸 (
𝑘∑︁
𝑗=1

𝑥 𝑗𝑦
3

𝑗 +
∑︁
𝑗≠𝑗

𝑥 𝑗𝑦 𝑗𝑦
2

𝑗 ′ ).

We have

𝐸 (𝑥 𝑗𝑦3𝑗 ) = 𝐸 (
𝐷∑︁
𝑖=1

𝑢𝑖𝑟𝑖 𝐼𝑖 𝑗 ) (
𝐷∑︁
𝑖=1

𝑣𝑖𝑟𝑖 𝐼𝑖 𝑗 )3

=𝐸 (
𝐷∑︁
𝑖=1

𝑢𝑖𝑣𝑖𝑟
2

𝑖 𝐼𝑖 𝑗 +
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ) (
𝐷∑︁
𝑖=1

𝑣2𝑖 𝑟
2

𝑖 𝐼𝑖 𝑗 +
∑︁
𝑖≠𝑖′

𝑣𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 )

=𝐸 [
𝐷∑︁
𝑖=1

𝑢𝑖𝑣𝑖𝑟
2

𝑖 𝐼𝑖 𝑗

𝐷∑︁
𝑖=1

𝑣2𝑖 𝑟
2

𝑖 𝐼𝑖 𝑗 +
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗

∑︁
𝑖≠𝑖′

𝑣𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ]

=
𝑠

𝑘

𝐷∑︁
𝑖=1

𝑢𝑖𝑣
3

𝑖 +
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖𝑣
2

𝑖′𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ) + 2

∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖𝑣
2

𝑖′𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 )

=
𝑠

𝑘

𝐷∑︁
𝑖=1

𝑢𝑖𝑣
3

𝑖 + 3𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 )
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖𝑣
2

𝑖′ ,

where we use the following computation:

𝐸 (
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ) (
∑︁
𝑖≠𝑖′

𝑣𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 )

=
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖𝑣
2

𝑖′𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ) + 𝐸 (
∑︁
𝑖<𝑖′

𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ) (
∑︁
𝑖>𝑖′

𝑣𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 )

+ 𝐸 (
∑︁
𝑖>𝑖′

𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ) (
∑︁
𝑖<𝑖′

𝑣𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 )

=
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖𝑣
2

𝑖′𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ) +
∑︁
𝑖<𝑖′

𝑢𝑖𝑣𝑖𝑣
2

𝑖′𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ) +
∑︁
𝑖<𝑖′

𝑢𝑖′𝑣
2

𝑖 𝑣𝑖′𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 )

=2
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖𝑣
2

𝑖′𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ) .

Furthermore, we have

𝐸 (𝑥 𝑗𝑦 𝑗𝑥2𝑗 ′ ) = 𝐸 (
𝐷∑︁
𝑖=1

𝑢𝑖𝑟𝑖 𝐼𝑖 𝑗 ) (
𝐷∑︁
𝑖=1

𝑣𝑖𝑟𝑖 𝐼𝑖 𝑗 ) (
𝐷∑︁
𝑖=1

𝑢𝑖𝑟𝑖 𝐼𝑖 𝑗 ′ )2

=𝐸 (
𝐷∑︁
𝑖=1

𝑢𝑖𝑣𝑖𝑟
2

𝑖 𝐼𝑖 𝑗 +
∑︁
𝑖≠𝑖′

𝑢𝑖𝑣𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ) (
𝐷∑︁
𝑖=1

𝑢2𝑖 𝑟
2

𝑖 𝐼𝑖 𝑗 ′ +
∑︁
𝑖≠𝑖

𝑢𝑖𝑢𝑖′𝑟𝑖𝑟𝑖′ 𝐼𝑖 𝑗 ′ 𝐼𝑖′ 𝑗 ′ )

=𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ′ )
∑︁
𝑖≠𝑖

𝑢𝑖𝑢
2

𝑖′𝑣𝑖 .

Thus, by symmetry we have

𝐸 (
𝑘∑︁
𝑗=1

𝑥 𝑗𝑦 𝑗 ) (
𝑘∑︁
𝑗=1

𝑥2𝑗 +
𝑘∑︁
𝑗=1

𝑦2𝑗 ) (13)

= 𝐸 (
𝑘∑︁
𝑗=1

𝑥3𝑗𝑦 𝑗 +
∑︁
𝑗≠𝑗

𝑥 𝑗𝑦 𝑗𝑥
2

𝑗 ′ ) + 𝐸 (
𝑘∑︁
𝑗=1

𝑥 𝑗𝑦
3

𝑗 +
∑︁
𝑗≠𝑗

𝑥 𝑗𝑦 𝑗𝑦
2

𝑗 ′ )

= 𝑠

𝐷∑︁
𝑖=1

(𝑢𝑖𝑣3𝑖 + 𝑢
3

𝑖 𝑣𝑖 ) + 3𝑘𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 )
∑︁
𝑖≠𝑖′

(𝑢𝑖𝑣𝑖𝑣2𝑖′ + 𝑢𝑖𝑣𝑖𝑢
2

𝑖′ )

+ 𝑘 (𝑘 − 1)𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ′ )
∑︁
𝑖≠𝑖

(𝑢𝑖𝑢2𝑖′𝑣𝑖 + 𝑢𝑖𝑣
2

𝑖′𝑣𝑖 ).

Now we combine (11), (12) and (13) with (10) to obtain

(
𝑘∑︁
𝑗=1

𝑥 𝑗𝑦 𝑗 − 𝜌/2
𝑘∑︁
𝑗=1

𝑥2𝑗 − 𝜌/2
𝑘∑︁
𝑗=1

𝑦2𝑗 )
2

= (𝑠 − 1)
𝐷∑︁
𝑖=1

((1 + 𝜌2/2)𝑢2𝑖 𝑣
2

𝑖 + 𝜌2𝑢4𝑖 /4 + 𝜌2𝑣4𝑖 /4 − 𝜌𝑢𝑖𝑣
3

𝑖 − 𝜌𝑢3𝑖 𝑣𝑖 )

+ 𝑘𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ) [1 + 𝜌2 − 2

𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖 ] + 𝜌2𝑘𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ) [1 −
𝐷∑︁
𝑖=1

(𝑢4
𝑖
+ 𝑣4

𝑖
)

2

]

+ 𝜌2 [4 + 2𝑘𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ) (𝜌2 −
𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖 )]/2

− 𝜌 [2𝜌 + 2𝑘𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ) (2𝜌 −
𝐷∑︁
𝑖=1

(𝑢3𝑖 𝑣𝑖 + 𝑢𝑖𝑣
3

𝑖 ))]

= (𝑠 − 1)
𝐷∑︁
𝑖=1

((1 + 𝜌2/2)𝑢2𝑖 𝑣
2

𝑖 + 𝜌2𝑢4𝑖 /4 + 𝜌2𝑣4𝑖 /4 − 𝜌𝑢𝑖𝑣
3

𝑖 − 𝜌𝑢3𝑖 𝑣𝑖 )

+ 𝑘𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ) [1 + 𝜌2 − 2

𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖 + 𝜌2 − 𝜌2/2
𝐷∑︁
𝑖=1

(𝑢4𝑖 + 𝑣4𝑖 )

+ 𝜌4 − 𝜌2
𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖 − 4𝜌2 + 2𝜌

𝐷∑︁
𝑖=1

(𝑢3𝑖 𝑣𝑖 + 𝑢𝑖𝑣
3

𝑖 )]

= (𝑠 − 1)𝐴 + 𝑘𝐸 (𝐼𝑖 𝑗 𝐼𝑖′ 𝑗 ) [(1 − 𝜌2)2 − 2𝐴],

where𝐴 =
∑𝐷
𝑖=1 ((1+𝜌2/2)𝑢2𝑖 𝑣

2

𝑖
+𝜌2𝑢4

𝑖
/4+𝜌2𝑣4

𝑖
/4−𝜌𝑢𝑖𝑣

3

𝑖
−𝜌𝑢3

𝑖
𝑣𝑖 ).

This gives the general expression of the variance term. Apply-

ing Lemma 3.1 leads to the variance formula for the two binning

schemes respectively. Lastly, we may simplify 𝐴 as

𝐴 =

𝐷∑︁
𝑖=1

𝑢2𝑖 𝑣
2

𝑖 + 𝜌2/4
𝐷∑︁
𝑖=1

(𝑢2𝑖 + 𝑣2𝑖 )
2 − 𝜌

𝐷∑︁
𝑖=1

(𝑢3𝑖 𝑣𝑖 + 𝑢𝑖𝑣
3

𝑖 )

=

𝐷∑︁
𝑖=1

(𝑢𝑖𝑣𝑖 −
𝜌

2

(𝑢2𝑖 + 𝑣2𝑖 ))
2 + 𝜌 (𝑢𝑖𝑣𝑖 ) (𝑢2𝑖 + 𝑣2𝑖 ) − 𝜌 (𝑢3𝑖 𝑣𝑖 + 𝑢𝑖𝑣

3

𝑖 )

=

𝐷∑︁
𝑖=1

(𝑢𝑖𝑣𝑖 −
𝜌

2

(𝑢2𝑖 + 𝑣2𝑖 ))
2 .

This completes the proof for normalized data. Otherwise, we need

to replace 𝑢𝑖 and 𝑣𝑖 by 𝑢
′
𝑖
=

𝑢𝑖√︃∑𝐷
𝑡=1 𝑢

2

𝑡

, and 𝑣 ′
𝑖
=

𝑣𝑖√︃∑𝐷
𝑡=1 𝑣

2

𝑡

. □
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