
Tree-based Text-Vision BERT for Video Search in
Baidu Video Advertising

Tan Yu, Jie Liu, Yi Yang, Yi Li, Hongliang Fei, Ping Li

Cognitive Computing Lab, Baidu Research
Baidu Search Ads (Phoenix Nest), Baidu Inc.

10900 NE 8th St. Bellevue, Washington 98004, USA
No. 10 Xibeiwang East Road, Beijing 100193, China

{tanyu01, liujie34, yangyi15, liyi01, hongliangfei, liping11}@baidu.com

Abstract—1The advancement of the communication technology
and the popularity of the smart phones foster the booming of
video ads. Baidu, as one of the leading search engine companies
in the world, receives billions of search queries per day. How
to pair the video ads with the user search is the core task of
Baidu video advertising. Due to the modality gap, the query-
to-video retrieval is much more challenging than traditional
query-to-document retrieval and image-to-image search. Tradi-
tionally, the query-to-video retrieval is tackled by the query-to-
title retrieval, which is not reliable when the quality of tiles
are not high. With the rapid progress achieved in computer
vision and natural language processing in recent years, content-
based search methods becomes promising for the query-to-video
retrieval. Benefited from pretraining on large-scale datasets,
some visionBERT methods based on cross-modal attention have
achieved excellent performance in many vision-language tasks
not only in academia but also in industry. Nevertheless, the
expensive computation cost of cross-modal attention makes it
impractical for large-scale search in industrial applications. In
this work, we present a tree-based combo-attention network
(TCAN) which has been recently launched in Baidu’s dynamic
video advertising platform. It provides a practical solution to
deploy the heavy cross-modal attention for the large-scale query-
to-video search. After launching tree-based combo-attention net-
work, click-through rate gets improved by 2.29% and conversion
rate get improved by 2.63%.

Index Terms—advertising, search, cross-modal

I. INTRODUCTION

Since high-quality videos can quickly build the engagement
with the audience, video ads are substantially more compelling
over its counterparts. Recently, with the popularity of reliable
high-speed internet, videos can be transferred in seconds,
which fosters the blooming of video advertising market. The
advertisers are putting more efforts on video advertising to
build a relationship with customers in a more effective way.
Baidu, as one of leading search engine companies of the
world, receives billions of text queries from users’ searches.
Linking the relevant video ads provided by advertisers with
potential customers according to their search queries is the
main task of Baidu video advertising. The quality of matching

1This revision is based on a manuscript submitted in October 2020, to
ICDE’21. We thank the Program Committee for their valuable comments.

the query with the video ads directly influences the revenue
of the advertisers.

In essence, linking the video as with the user query is
a cross-modal retrieval problem, as the query is in the text
modal, and the ads are in the video modal. Due to modal
gap, the cross-modal retrieval is much more challenging than
traditional query-to-document retrieval in existing mainstream
search engine. Traditionally, the query-to-video retrieval is
converted into text-to-text retrieval by matching the query text
with the video title. Since both video titles and user queries are
text, it can be readily addressed by current text retrieval model.
Nevertheless, it requires expensive human labors to create
the high-quality titles for videos. Meanwhile, the manually-
labeled titles are subjective to the annotators, and thus might
not effectively embody the visual content. To improve the
quality of the text-to-visual retrieval, a more reliable way is to
directly match the user’s query with the visual content through
the natural language processing (NLP) and computer vision
techniques.

In the past years, we have witnessed rapid progress in
both computer vision and NLP. Some deep learning models
pretrained by large-scale dataset have achieved significantly
better performance than traditional methods based on hand-
crafted features. To be specific, convolutional neural network
(CNN) [21] has substantially improved the performance in
image/video recognition. Meanwhile, its output of a CNN’s
hidden layer is an effective image/video representation which
can be used for visual-to-visual retrieval. In parallel, the trans-
former [51] and BERT [9] has achieved substantial success in
many NLP tasks. Similarly, the output of a BERT’s hidden
layer is also effective for text-to-text retrieval. Despite the
CNN feature and BERT feature have achieved significant
success in visual-to-visual and text-to-text retrieval tasks, the
text-to-visual search in our task is still challenging.

Traditionally, the text-to-visual cross-modal retrieval is
solved by the joint embedding [12], [16]. It maps the features
from different modals into the same feature space and thus
their similarity can be directly measured by their Euclidean
distance in the joint feature space. In the training phase,
it seeks to enlarge the distance between the text and its
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Fig. 1. The architecture of the proposed tree-based combo-attention network (TCAN). In the retrieval phase, it only uses CAN to calculate the similarity
between the query and the tree node along the traverse path. Since the number of traversed nodes is significantly smaller than that of all videos in the database,
the efficiency is considerably boosted.

irrelevant images/videos in the joint feature space, and mean-
while minimize the distance between the text and its relevant
images/videos in the joint feature space. One of the amazing
properties of the joint embedding is that it generates the global
text/visual features, and is well compatible with approximate
nearest neighbor (ANN) search techniques such as inverted in-
dexing or graph/tree-based indexing. It is hence quite efficient
for large-scale cross-modal retrieval applications.

Nevertheless, the global features used in joint embedding
methods might not be able to conduct fine-level matching
between words and local regions of an image/video. In many
cases, only few words in the query sentence are relevant with
some small local regions in the video/video. Therefore, to
conduct local matching more effectively, some methods [29]
rely on local features. Basically, they represent an image
by a set of bounding box features and represent the query
sentence as a set of word features. Then the relevance score
is determined by the set-to-set matching. Recently, inspired
by the breakthrough achieved by BERT in NLP, many vision-
based BERT methods [36], [37], [47], [59] have been pro-
posed, and achieve an excellent performance in cross-modal
tasks like visual question answering (VQA), image captioning
and cross-modal retrieval. In parallel, Baidu has launched a
combo-attention network (CAN) [58] for an effective query-
to-video retrieval in dynamic video adverting (DVA) platform.
Nevertheless, since the cross-attention mechanism used in
CAN takes expensive computation cost, it is impossible to
use CAN to compute the similarity between the query and all
video ads due to limited computing resource. Thus, previously,
we first conducted the coarse-level retrieval through title-
based retrieval and deployed CAN in the re-ranking phase
for the search efficiency. Nevertheless, in this case, some

relevant videos might be filtered out in the title-based retrieval
due to their low-quality titles. A more reasonable way is to
incorporate the cross-modal attention in the early stage.

Recently, tree model is revisited to speed up the deployment
of deep models in the recommendation system. Nevertheless,
the query’s feature used in our CAN is a set of discrete local
features, and thus cannot be represented as an embedding fea-
ture to build a tree as TDM [57], [70]. To tackle this problem,
we propose a novel dual-path CAN to make it compatible with
tree-based model. Based on it, we build Tree-based Combo-
Attention Network (TCAN), which is recently launched in
Baidu’s dynamic video advertising platform. It achieves high
effectiveness by using the combo-attention network (CAN),
and meanwhile achieves high efficiency by exploiting the
tree structure which avoids exhaustively comparing with each
sample in the database. We visualize the overview of the
proposed TCAN in Figure 1. Basically, given a query, it
traverses the tree from the root to leafs, the combo-attention
network is only computed on nodes along the traverse trace,
which avoid exhaustively comparing the query with all videos
in the database. Given N reference videos in the database, the
tree model decreases the computation complexity from O(N)
to O(log(N)), making it feasible for online serving. After
launching the TCAN, we achieve a 2.26% increase in CTR,
and a 2.63% increase in CVR.

In a nutshell, the contributions of this paper are four-fold:

• We upgrade the two-stage deployment of original CAN to
a one-stage CAN structure. The one-stage CAN simulta-
neously considers the video’s title and its visual content.

• We design a dual-path structure for one-stage CAN,
which supports feature embedding as well as cross at-
tention simultaneously.



• Based on the proposed dual-path CAN, we built a tree-
based CAN. Benefited from the tree structure, it achieves
an effective and efficiency cross-modal retrieval.

• We have validated the effectiveness of tree-based CAN
in Baidu’s dynamic video advertising platform. The
promising results demonstrate its usefulness for large-
scale cross-modal retrieval in industrial applications.

II. RELATED WORK

We review the related work in four fields: cross-modal
retrieval, approximate nearest neighbor search, fast neural
network and Baidu’s search ads.

A. Cross-modal Retrieval

The traditional cross-modal retrieval tasks are tackled by
joint embedding [12], [16]. It maps the images and texts
from their original feature space into a joint feature space
so that they can be compared directly. They target to learn
a mapping function, which maximizes the distance between
an irrelevant image-text pair to be large , and meanwhile
minimizes the distance between relevant image-text pairs. To
learn the mapping function more effectively. VSE++ [10]
conducts hard negative sampling, which only penalizes the
hardest negative sample in each mini-batch. Since the joint-
embedding methods generate global features, it well supports
feature indexing and thus is quite suitable for large-scale
cross-modal retrieval. On the other hand, the global features
cannot model the fine-level matching between words and local
regions, and thus it might not be effective to capture relevance
between an image and a text sentence.

To more effectively describe the relevance between the
image and text, several works [29] rely on local features. To
be specific, they represent an image by a set of bounding box
features which are extracted by pre-trained object detectors.
The detected bounding boxes are the candidate locations of
objects in the image. Meanwhile, they represent the sentence
by a set of word features. Then the relevance between the
image and the text sentence is obtained by set-to-set matching
between word features and bounding box features. When
conducting the set-to-set matching, the relevant word-box pairs
with a large similarity score can be easily identified.

To further improvement the performance of text-vision
retrieval methods. Several work [8], [38], [61] inject the cross-
modal context when generating image/text representation. For
instance, when computing the sentence representation, m-
CNN [38] concatenate the image’s feature with words’ features
as the input of the 1D convolution. In parallel, when computing
image features, BCN [8] uses text features to guide the
generation of image features. Recently, inspired by the triumph
achieved by BERT in many natural language processing (NLP)
tasks [9], some vision-BERT methods [37], [47] are proposed,
achieving excellent performance in many cross-modal tasks
such as visual question answering (VQA), image/video cap-
tioning and cross-modal retrieval. Basically, the vision-BERT
method can be coarsely grouped into two categories. The
methods of the first category adopt a single-stream structure.

It treats the bounding box features and word features without
bias, and directly concatenate them as the input of the self-
attention modules. The methods of the second category adopt
a two-stream structure. In the text stream, the words features
generate query vectors, and the bounding box features are
used to generate value vectors and key vectors. On the other
hand, in the vision stream, the bounding box features generate
query vectors, and the word features are used to generate
value vectors and key vectors. In fact, both single-stream and
two-stream vision-BERT methods are computationally costly.
Therefore, it is impractical to directly use them to conduct
large-scale cross-modal retrieval.

B. Approximated Nearest Neighbor Search

To boost the search efficiency, many approximated nearest
neighbor (ANN) search methods are proposed. The research on
ANN dates back to at least the 1970s [14], [15]. Traditionally,
ANN search methods mainly include hashing-based meth-
ods [7], [25], [31]–[33], [45], [52], [53], quantization-based
method [1], [19], [26], [65], tree-based method [4], [34], [44],
[62], and graph-based method [17], [39], [49], [66]. In recent
years, “neural ranking” has also attracted increasingly more
attentions [18], [48], [50], [57], [69], [70], [72]. Also, inspired
by the success of deep learning, many deep Hashing [35],
[71] and deep PQ [5], [60] work are proposed. Basically, them
incorporate the Hashing and PQ in a neural network, and trains
the Hashing or PQ codes in an end-to-end manner.

Despite Hashing codes and PQ codes can enable the fast
computation between the query and each reference item, when
the number of reference items in the database is large, the
time cost is still costly. To make the retrieval more scalable to
large-scale dataset, some non-exhaustive search methods are
proposed. Inverted multiple indexing (IMI) [3] is one of the
most popular methods for non-exhaustive search. Basically, it
partitions the feature space into fine cells through the k-means.
It only computes the similarity between the query and the
cell centroids. Since the number of centroids is significantly
smaller than the number of reference items, the efficiency is
considerably boosted. In parallel, K-Dimensional tree [46] is
another widely used strategy for avoiding comparing the query
with each item exhaustively. It builds a binary search tree to
partition the feature space, and formulates the retrieval into a
tree traverse problem. Recently, TDM [70] also exploits the
tree structure to boost the efficiency of deep models deployed
in recommendation system. The core idea is that, it only
evaluate the expensive deep models in a small subset of tree
nodes and avoids evaluating the deep models on all items in
the database.

C. Fast Neural Network

The heavy computation cost of deep neural network limits
its usefulness in online serving or mobile applications. Many
studies [20] have shown that, network weights might be
redundant and do not convey much information. In some
cases [63], some large-scale models tend to memorize the



dataset instead of learning some generic capability, suffer-
ing from serious over-fitting. To boost the efficiency and
suppress over-fitting, recently, many efficient and compact
neural network architecture are developed, achieving very
promising performance in both effectiveness and efficiency.
One of most widely used strategy is training quantized neural
networks [6], [23], [40], [42], [55], [64]. For instance, [6], [42]
design the binary neural network where the value of weights
are chosen from two constants. In parallel, some efficient
neural networks [20], [24], [54] are obtained by compressing
already-trained neural networks. Inspired by the recent success
achieved by knowledge distillation [22], some methods [27],
[41] propose to find a more compact student network through
knowledge distillation. To be specific, [41] jointly learn the
weight quantization and the model distillation. [27] designs
a Tiny-BERT by distilling the knowledge from the large-
scale BERT model. Following the spirit of Tiny-BERT, in our
work, we also exploit the knowledge distillation for model
compression.

D. Baidu’s Search Ads

Baidu Search Ads (a.k.a. “Phoenix Nest”) is one of the
most important revenue sources for Baidu [11], [13], [56].
In the search industry, sponsored online advertising produces
many billions of dollar revenues for online advertisers. Since
around 2017, Baidu Search Ads has been undergoing several
major upgrades by incorporating the rapid-growing technolo-
gies in near neighbor search, machine learning, and systems.
For example, [67] reported new architectures for distributed
GPU-based parameter servers which have replaced the MPI-
based system for training CTR models. [11] described the
widespread use of approximate near neighbor search (ANNS)
and maximum inner product search (MIPS) [66], [68] to
substantially improve the quality of ads recalls in the early
stage of the pipeline of Baidu’s ads system. In recent years,
Baidu’s short-form video recommendations [30] and video-
based search ads have achieved great progress [57]–[59]. In
this paper, we introduce the technology for a representative
project which has significantly boosted Baidu’s video-based
ads revenues.

III. BACKGROUND

A. Definition

Given a video, we extract key frames from it. For each key
frame, bounding boxes are detected by Faster R-CNN. Each
detected bounding box denotes the location of a candidate
object in the key frame. Note that, the detected bounding
boxes normally have overlap with each other, and thus there
is significant redundancy among the detected bounding boxes.
Therefore, after we obtain all the bounding boxes of all
keyframes, we utilize the k-means clustering to group them
into K clusters. Then the video’s representation is the set of
cluster centroids, C = [c1, · · · , cK ]. Given a query sentence,
we obtain a sequence of word features W = [w1, · · · ,wM ]
through a pretrained word embedding.

B. Basic Block

The combo attention network takes W and C as input.
Basically, it concatenates W and C into a new sequence:

M0 = [c1, · · · , cK ,w1, · · · ,wM ]. (1)

It adopts a series of standard self-attention modules to pro-
cess the combined sequence. To be specific, let denote the
input of the i-th self-attention module by Mi−1 and denote
the output of the i-th self-attention module by Mi. It first
computes the query vectors Qi = [qi,1, · · · ,qi,M+K ], key
vectors Ki = [ki,1, · · · ,ki,M+K ] and value vectors Vi =
[vi,1, · · · ,vi,M+K ] by

Vi = fi(Mi), Ki = gi(Mi), Qi = hi(Mi), (2)

where

fi(Mi) = WfiMi, gi(Mi) = WgiMi, hi(Mi) = Whi
Mi,
(3)

, and Wfi , Wgi and Whi are weight matrices to be learned.
In implementation, fi(·), gi(·) and hi(·) are implemented by
fully-connected layers with the bias fixed as 0.

For each query vector, qi,j , the self-attention module com-
putes the matrix-vector product between qi,j and the key
matrix Ki followed by a softmax operation, the soft-attention
vector ai,j is obtained by

ai,j = softmax(Kiq
>
i,j), (4)

where softmax is defined as

softmax([x1, · · · , xD]) = [
ex1∑D
i=1 e

xi

, · · · , exD∑D
i=1 e

xi

]. (5)

Then the attended feature vector fi,j is obtained by a
weighted summation over all columns of Vi and the weights
are items in ai,j :

fi,j = Via
>
i,j . (6)

The attended feature matrix Fi consists of all attended fea-
tures:

Fi = [fi,1, · · · , fi,K+M ]. (7)

Fi goes through an add&norm layer and generates:

Mi = norm(Fi +Mi−1), (8)

where norm(·) denotes the layer normalization [2]. Note that,
for easiness of illustration, the above formulation is based
on the single head. In implementation, we adopt an 8-head
settings for all attention blocks.

C. Similarity and Loss Function

Similarity computation. After the processing of N lay-
ers of self-attention modules, we generate the self-attended
features MN = [mN,1, · · · ,mN,K+M ]. Among them,
[mN,1, · · ·mN,1] correspond to the attended bounding box
centroids and [mN,K+1, · · ·mN,K+M ] correspond to the at-
tended word features. We denote by cN,j = mN,j as the j-th
self-attended centroid and denote by wN,j = mN,K+j as the
j-th self-attended word feature.



Soft attention layer CN = [cN,i, · · · , cN,K ] as well as
WN = [wN,1, · · · ,wN,M ] as input, and computes a similarity
matrix S by

S = C>NWN . (9)

For each column of S, si, we conduct a soft-max operation
on it and obtained a new vector:

s̃i = softmax(si). (10)

Then a new similarity matrix is obtained through S̃ =
[ŝ1, · · · , ŝM ]. The output of soft attention layer is computed by

W̃N = CN S̃. (11)

The final similarity score is computed by

s =

M∑
i=1

〈w̃N,i,wN,i〉, (12)

where w̃N,i denotes the i-th column of W̃N . In the search
phase, the obtained similarity score s is used for ranking the
videos given a text query. In the training phase, s is used for
constructing the training loss.

Training loss. The training is conducted on each mini-
batch. Each mini-batch consists of K ground-truth video-
sentence pairs {(Vk, Sk)}Kk=1. Each video Vk in the mini-
batch is only relevant with the sentence in its ground-truth
sentence-video pair, Sk, and irrelevant with other sentences.
In the training process, we seek to maximize the similarities
between relevant sentence-video pairs and minimize the simi-
larities between irrelevant sentence-video pairs. We denote the
similarity score of the video Vi and the sentence Sj by s(i, j),
and construct the loss L by

L =

K∑
k=1

∑
j 6=k

[m− s(k, k) + s(k, j)]+

+

K∑
k=1

∑
j 6=k

[m− s(k, k) + s(j, k)]+,

(13)

where [a]+ = max(a, 0) is a clip function, and m is the
margin which we set as 0.2 by default. Based on the definition,
the loss L only penalizes the pairs beyond the margin m.
To some extent, this kind of settings only penalizes the hard
negative samples. Intuitively, the first part of L in Eq. (13)
focuses on the query side, which penalizes the hard negative
videos with respect to the query. On the other hand, the second
part of L focuses on the video side, which penalizes the hard
negative queries with respect to the video.

D. Deployment

Since the computational cost of the CAN is expensive, it
is not practical to use it to calculate the similarity between
the text query and all videos in the database considering the
number of videos is large. Therefore, we only deploy the
CAN in the re-ranking stage. As shown in Figure 2, given
a text query, we first conduct the title-based search to retrieval
top M video candidates. Since we use global feature as the

User Query Video 
Corpus

Top M
Videos

CAN
Title-based

Search

Video 1

Video 2

Video M

………

Fig. 2. The deployment of CAN in the first launching. Given a query, it first
uses the title-based search to recall M candidate videos. After that, it uses
CAN to rerank M candidate videos to get the top-K videos. Since the visual
information is only considered in the re-ranking phase, some relevant videos
might be filtered out in the title-based search phase due to low title quality.

title representation, it readily supports graph indexing and thus
makes the title-based search very fast. After that, CAN is used
to re-rank the candidate M videos based on their similarity
scores.

IV. TREE-BASED COMBO-ATTENTION NETWORK

As shown in Section III, considering the efficiency issue,
CAN was only deployed in the re-ranking phase for high
efficiency in the first launching. But this might filter out some
relevant videos before re-ranking and limits the effectiveness
of CAN. A natural question is raise: can CAN be deployed in
the early stage more efficiently? One straightforward solution
is to adopt the existing methods for speeding up the neural
network to make CAN faster. Nevertheless, in the industrial
application, the number of reference in the dataset are nor-
mally in the billion scale, making the retrieval even based on
a faster CAN still slow.

In the retrieval field, a commonly used strategy to speed up
the retrieval is approximated nearest neighbor (ANN) search.
By adopting some indexing methods, ANN avoids comparing
the query with all reference items in the database, and thus the
efficiency is significantly boosted. Nevertheless, the existing
architecture of CAN makes it incompatible with indexing-
based ANN. On one hand, CAN needs to compute the cross-
modal attentions which relies on interactions between the text
feature and video feature, making indexing-based ANN search
not feasible. On the other hand, CAN relies on discrete local
word features and bounding box features, making ANN even
harder. In this section, we introduce the tree-based Combo-
Attention Network, which simultaneously solves above two
obstacles. Basically, the improvement of the proposed TCAN
over original CAN is three-fold:

• We simultaneously consider the video’s visual and title
information. Thus, we no longer need the two-stage re-
ranking process used in previous deployment of CAN.
Instead, we can directly obtain the similarity between the
query and a video in a single stage.

• We adopt a dual-path structure. On one path, it support
the video/query global embedding for the further tree-
based video feature indexing. On the other path, it adopts
the spirit of original CAN which exploits the cross-modal
attention for an effective cross-modal retrieval.



• We build a binary search tree. The tree is constructed by
the videos’ embedding. In the search phase, the query is
only compared with the nodes along visiting trace, which
significantly boosts the efficiency.

• We exploit the knowledge distilling to build a lighter
network for faster inference on each tree node.

Below we introduce these four parts in details.

A. One-stage CAN

As shown in Figure 2, the first launching of CAN adopts a
two-stage method. In the first stage, it only considers the video
title and the video’s visual information is considered in the
second stage. In contrast, the one-stage CAN simultaneously
takes the video’s title and visual content into consideration.
The main difference between the original CAN and the current
one-stage counterpart lies in the input. We define the query’s
word features as Wq = {wq,1, · · · ,wq,L}, define the video’s
bounding box features as Bv = {bv,1, · · · ,bv,M} and define
the video title’s word features as Wv = {wv,1, · · · ,wv,M}.
The input of the original CAN is [Wq,Bv]. In contrast,
the input of the one-stage CAN is O0 = [Wq,Bv,Wv].
The one-stage CAN also consists of a series of self-attention
layers {SAt(·)}Tt=1. We denote the input of i-th SA layer by
Oi−1 and denote the output of the i-th SA layer by Oi. In
Algorithm 1, we give the detailed process to generate Oi given
Oi−1.

Algorithm 1 i-th self-attention layer in one-stage CAN.
Input: The input feature Oi−1.
Output: The output feature Oi.

1: Qi = WfiMi, Ki = WgiMi, Vi = WhiMi

2: for j ∈ [1, L+M +N ] do
3: qj ← Qi[:, j]
4: aj ← softmax(K>i qj)
5: fj ← Viaj
6: oj = layernorm(Oi−1[:, j] + fj)

7: Oi = [o1, · · · ,oL+M+N ]
8: return Oi.

Using the output of the last self-attention layer ON , we
compute the similarity between the query and the video.
The first L elements in ON correspond to the query’s lo-
cal features, and the rest elements correspond to the video
title’s word features or bounding box features. We define
Q = ON [:, 0 : L] as the query’s local features, and define
V = ON [:, L : L+M +N ] as the video’s local feature. Then
the similarity between the query and video is calculated by
cross-matching between V and Q. In Algorithm 2, we give
the detailed process to generate the cross-matching similarity
simcross given the query’s local features Q and the video’s
local features V. In the testing phase, the simcross determines
the traverse trace along the binary search tree which we will
introduce later. In the training phase, simcross is used for
constructing the triplet loss Lcross.

Algorithm 2 Cross Matching between the query’s local fea-
tures Q and the video’s local features V.

Input: The query’s local features Q and the video’s local
features V.
Output: The cross-matching similarity simcross.

1: for j ∈ [1, L] do
2: qj ← Q[:, j]
3: aj ← softmax(V>qj)
4: q̂j ← Viaj

5: simcross =
∑L
j=1

qj q̂j

‖qj‖2‖q̂j‖2
6: return simcross.

B. Dual-path CAN

Dual-path CAN is extended from CAN. But we make the
original CAN a dual-path structure. As visualized in Figure 3,
for the first path, it adopts the spirit of the original CAN, the
query’s local features and the video’s local features are con-
catenated and fed into a self-attention module which supplies
the combo-attention for an effective cross-modal retrieval.
Note that, the video’s local features used in dual CAN not only
includes the video’s bounding box features, but also contains
the video title’s word features. Meanwhile, it also adopts the
same soft-attention similarity measurement as CAN based on
local features and generate the cross similarity simcross. In the
second path, two self-attention modules are trained in parallel.
One self-attention module takes input the query’s local features
and generate the query’s embedding feature q, the first token’s
hidden feature of the last layer. The other self-attention module

self-attention self-attention

self-attention self-attentionself-attention

simcrosssimembed

query features video features

Fig. 3. The architecture of dual CAN. It consists of two paths. In the
embedding-path, it trains two self-attention modules for the video and query
individually, and obtains the video and the query’s embedding feature. The
embedding-path is trained by the loss constructed by the embedding simi-
larity simembed calculated by the cosine similarity between two embedding
features. The obtained videos’ embedding features are further used to construct
the binary search tree. In the cross-path, it follows the spirit of the original
CAN. It concatenate the video’s local features and the query’s local features,
and feed them into a self-attention module to obtain the combo-attention. It is
trained by the loss constructed by the cross similarity simcross calculated by
the soft-attention matching used in the original CAN. In the retrieval phase,
simcross measures the relevance between the query and nodes of the binary
search tree. These two paths share the same early self-attention modules, and
are trained jointly.



takes input the video’s local features and generates the video’s
global embedding feature v. Then the similarity between the
video and the query is obtained by

simembed = 〈q,v〉/‖q‖‖v‖. (14)

When training the dual-path CAN, we compute a triplet loss
Lcross based on simcross and the other triplet loss Lembed

based on simembed. The loss function is obtained by a
weighted summation of these two losses:

Ldual = Lcross + λLembed, (15)

where λ is a positive constant which we set as 0.5 by default.
In the search phase, we only use the cross similarity for the
tree traverse. On the other hand, we use the video embedding
trained from the Lembed to construct the tree.

C. Tree Structure

The binary search tree is constructed based on videos’
embedding feature {v1, · · · ,vN}. To be specific, we use hier-
archical k-mediods to build the binary search tree based on the
clustering results of videos’ embedding feature {v1, · · · ,vN}.
Note that, there are two ways to conduct the hierarchical k-
mediods, the top-down way and the bottom-up way. We use the
top-down way considering the efficiency. Meanwhile, we use
the industry label of each sample as the initial clustering label
for k-mediods. In the tree, the nodes in each layer corresponds
to mediods in that level. Meanwhile, we use the node videos’
local features to compute the cross similarity between the
query and the node video.

The tree structure and the dual-path CAN are trained in an
alternating manner by updating one and fixing the other. To
be specific, it conducts two steps alternately. In the first step,
for each query, we sample several negative nodes from each
layer to train the dual-path CAN model. In the second step,
it updates the tree structure based on the videos’ embeding
features obtained from the first step. Note that, the negative
sampling strategy is quite important for the performance of
the proposed tree-based CAN. In Experiment Section, we will
compare different negative sampling in details.

Algorithm 3 The tree-based top K retrieval.
Input: The query’s embedding feature q, the query’s word
feature set W = {w1, · · · ,wM}, the number of retrieved
videos K, the trained tree with depth L and the learned
dual-path CAN.
Output: The top K retrieved videos.

1: Candidate set C = {root video node}.
2: for i ∈ [1, L] do
3: for V ∈ C do
4: calculate simcross(V,W)
5: sort V ∈ C in descending order of simcross(V,W)
6: get top K video nodes P .
7: C = {children nodes ofV|V ∈ P}
8: return top K items in C based on the simcross(V,W).

Algorithm 3 summarizes the tree-based top K retrieval
process. Benefited from the tree structure, the computation
complexity of the tree-based top-K retrieval is only O(N)
where N is the number of videos in the database. To be
more specific, for a dataset consisting of 10 million videos, it
builds a 23-layer binary search tree. For each layer, we needs
compute simcross for two nodes. Thus, in total, we only need
visit 1+22× 2 = 45 nodes, i.e., computing 45 times simcross

to find the top 1 video.

D. Knowledge Distilling

Considering the heavy computation cost in self-attention
layers for evaluating the tree node. We further improves the
efficiency through knowledge distilling. We design a student
network consists of two self-attention layers with hidden size
as 256 to distill the knowledge from 4 self-attention layers
with hidden size as 768. The distilling loss is designed in the
following way:

Ldistill = Lcrossstd + γMSE(simcross − simcrossstd), (16)

where MSE denotes the mean square error, Lcrossstd corre-
sponds to the triplet loss computed based on the cross path
of the student network, and crossstd corresponds to the cross
similarity obtained from the student network. γ is a constant
positive, which we set as 0.3 by default. The final loss is
defined as a weighted summation of Ldual and Ldistill:

L = Ldual + βLdistill, (17)

where β is a positive constant we set as 0.5.

V. OFF-LINE EXPERIMENTS

A. Datasets and Implementation Details

The experiments are conducted on our collected short video
dataset, Daily1.2B. It consists of 1.2 billion pairs of short
videos and query sentences, which are mainly about daily
lives collected from Baidu’s Haokan APP. Since the relevance
between a query and the short videos is relatively subjective
to users, we collect ground-truth pairs by selecting the query-
video pairs with high click rates, representing good ones for
a large number of users. In Figure 4, we visualize some pairs
of short videos and query sentences.

For each video, we sample 16 key frames from each video.
For each key frame, 32 bounding boxes are generated from
Faster R-CNN [43] built on ResNet-101 [21] pre-trained on
Visual Genomes [28]. For each detected region of the interest
(ROI), i.e., the bounding box, its feature is obtained by sum-
pooling the convolutional features within the bounding box.
The feature dimension is 2048. We use k-means to group 16×
32 = 512 detected bounding boxes into 32 clusters and use the
cluster centroids as the video’s initial representation. We set
the number of head in combo-attention network as 8. The tree
contains 8 million nodes in total, among which, 4 million are
leaf nodes. All models are trained and deployed based on the
PaddlePaddle deep learning framework developed by Baidu.



(a) Fun gopher game (b) How to make a delicious cake

(c) How to draw ink painting (d) Beauty tutorial

Fig. 4. The visualization of query-video pairs. In our Daily1.2B, texts are in Chinese. For the convenience of illustration, we translate the Chinese to English.

B. One-stage CAN.

Comparisons with two-stage CAN. As we mentioned
previously, in the first launching, we conduct a two-stage
retrieval process. In this first stage, it exploits title-based search
to conduct the coarse-level search and then use CAN for
reranking. We compare the proposed one-stage CAN with the
two-stage baseline. We vary the number of candidate item
pool M , among {32, 64, 128, 256, 512}. Two-stage baseline
first conduct the title-based search to retrieve the top 20 items
and then conduct re-ranking based on the original CAN. In
contrast, our one-stage CAN directly calculate the similarity
between the query and M candidate items using the video’s
title and visual information. We compare the mAP@3 achieved
by ours and that based on two-stage search. As shown in
Table I, our one-stage CAN consistently outperforms two-
stage CAN.

M 32 64 128 256 512
two-stage 0.984 0.975 0.962 0.948 0.928
one-stage 0.993 0.989 0.980 0.971 0.950

TABLE I
MAP@3 COMPARISONS BETWEEN TCAN WITH TITLE-BASED SEARCH.

Ablation Study. The one-stage CAN simultaneously con-
siders the video’s title and visual content. We study the
influence of each part on the retrieval performance. As shown
in Table II, using only video title’s word features, it only
achieves a 0.972 mAP@3. In contrast, using only video’s
visual features, the bounding box features, it only achieves a
0.912 mAP@3. Both of them are lower than mAP@3 achieved
by taking both title and visual features into consideration.
Meanwhile, despite that there are a large performance gap be-
tween the title local features and bounding box visual features,
fusing them still achieves a better performance. It demonstrates
the effectiveness of self-attention layers in feature fusion.

C. Knowledge Distilling

We conduct the ablation study on knowledge distilling. As
mentioned, the original CAN uses 4 self-attention layers with
hidden size as 768. In contrast, the student network only uses
two self-attention layers with hidden size as 256. As shown

M 32 64 128 256 512
title 0.972 0.960 0.952 0.938 0.916

visual 0.912 0.903 0.892 0.881 0.872
title & visual 0.993 0.989 0.980 0.971 0.950

TABLE II
ABLATION STUDY ON THE INFLUENCE OF VIDEOS’ TITLES AND VISUAL

CONTENT ON THE RETRIEVAL PERFORMANCE. THE PERFORMANCE IS
EVALUATED BY MAP@3.

in Table III, the performance achieved by the student network
is comparable with that of the original CAN, demonstrating
the effectiveness of the knowledge distilling. For instance, the
original CAN achieves a 0.698 mAP@1, whereas the student
network achieves a 0.694 mAP@1.

mAP@
1 3 5

Original 0.698 0.731 0.791
Student 0.694 0.725 0.780

TABLE III
THE ABLATION STUDY ON KNOWLEDGE DISTILLING.

D. Comparison with embedding-based binary search tree.

An alternative solution is to use the cosine similarity be-
tween query’s embedding and the video’s embedding obtained
from the embedding-path to replace the similarity calculated
from the CAN when traversing the binary search tree. We
compare the TCAN with embedding-based baseline. As shown
in Table IV, the proposed TCAN consistently outperforms
the embedding-based binary search tree. For instance, our
TCAN achieves a 0.694 mAP@1, whereas mAP@1 of the
embedding-based binary search tree is only 0.627.

mAP@
1 3 5

Embed 0.627 0.661 0.746
TCAN 0.694 0.725 0.780

TABLE IV
THE COMPARISONS AMONG NEGATIVE SAMPLING STRATEGIES.
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Fig. 5. Visualization of top-3 retrieved videos. Note that, in our Daily1.2B dataset, the texts are in Chinese.

E. Negative sampling strategy

As we mentioned, when training the dual-path CAN model,
we sample negative nodes from each layer of the tree. Since
the number of nodes increases exponentially as the depth
increases, a general guidance for negative sampling is to
sample more negative nodes in deeper layers. We compare
different negative sampling strategies including uniform sam-
pling, arithmetic sampling, and geometric sampling. In uni-
form sampling, we sample the same number of negative nodes
for each layer. In arithmetic sampling, we sample L negative
samples for the L-th level. In geometric sampling, we sample
dLαe samples for the L-th level. We test the performance
of geometric sampling when α ∈ {1.2, 1.3, 1.4, 1.5}. The
evaluation metric is AUC of the precision-recall retrieval
result. As shown in Table V, the negative sampling strategies

uniform arithmetic geometric
1.2 1.3 1.4 1.5

0.713 0.821 0.860 0.895 0.966 0.965

TABLE V
THE COMPARISONS AMONG NEGATIVE SAMPLING STRATEGIES.

have significant influence on the retrieval performance. To be
specific, the AUC achieved by uniform sampling is only 0.713,
and that achieved by arithmetic sampling is only 0.821. In
contrast, geometric sampling with α = 1.4 achieves s 0.966
AUC. By default we adopt geometric sampling with α = 1.4.

Figure 5 visualizes the retrieval result. For each query, we
show three key frames of top3 retrieved videos. As shown in
the figure, the retrieval quality is quite high.

VI. ONLINE EXPERIMENTS

We evaluate the proposed TCAN in Baidu dynamic video
advertising platform. Two online metrics are used to measure
the performance: click-through rate (CTR) and conversion rate
(CVR) defined as follows:

CTR =
# of clicks

# of impressions
,CVR =

revenue

# of clicks
. (18)

We compare the CTR and CVR of Baidu dynamic video
advertising platform before and after launching the proposed
TCAN. Note that, before launching TCAN, the video search
is based on title-based retrieval followed by CAN reranking.



metric CTR CVR
improvement 2.29% 2.63%

TABLE VI
ONLINE RESULTS FROM MAY. 17TH TO MAY. 20TH, 2020 IN BAIDU

DYNAMIC VIDEO ADVERTISING PLATFORM.

As shown in Table VI, after launching TCAN, CTR achieves
a 2.29% increase and CVR achieves a 2.63% increase.

VII. CONCLUSION

In this paper, we present the tree-based combo-attention
network (TCAN) recently launched in Baidu dynamic video
adverting platform. By extending the original CAN to dual-
path CAN, it simultaneously supports the cross-modal atten-
tion as well as the global feature embedding. Based on the
proposed dual-path CAN, we build a binary search tree, which
effectively avoid the exhaustive search and significantly boost
the retrieval efficiency. The systematic experiments conducted
on offline experiments demonstrate its effectiveness for cross-
modal retrieval. Meanwhile, the online experiments show the
launch of TCAN considerable boosts the revenue of Baidu
dynamic video adverting platform.
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