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Abstract—APP-installation information is helpful to describe
the user’s characteristics. The users with similar APPs installed
might share several common interests and behave similarly
in some scenarios. In this work, we learn a user embedding
vector based on each user’s APP-installation information. Since
the user APP-installation embedding is learnable without de-
pendency on the historical intra-APP behavioral data of the
user, it complements the intra-APP embedding learned within
each specific APP. Thus, they considerably help improve the
effectiveness of the personalized advertising in each APP, and
they are particularly beneficial for the cold start of the new users
in the APP. In this paper, we formulate the APP-installation user
embedding learning into a bipartite graph embedding problem.
The main challenge in learning an effective APP-installation user
embedding is the imbalanced data distribution. In this case,
graph learning tends to be dominated by the popular APPs,
which billions of users have installed. In other words, some
niche/specialized APPs might have a marginal influence on graph
learning. To effectively exploit the valuable information from the
niche APPs, we decompose the APP-installation graph into a
set of subgraphs. Each subgraph contains only one APP node
and the users who install the APP. For each mini-batch, we only
sample the users from the same subgraph in the training process.
Thus, each APP can be involved in the training process in a more
balanced manner. After integrating the learned APP-installation
user embedding into our online personal advertising platform,
we obtained a considerable boost in CTR, CVR, and revenue.

Index Terms—advertising, search, cross-modal

I. INTRODUCTION

For different users, a personalized advertising system feeds
different ads based on the estimated relevance between the
ad and the user’s interest. Normally, the relevance between
a user and an ad is measured by the similarity between
their embeddings, which are learned jointly from the users’
historical behaviors on the ads. Nevertheless, for new users,
there are no historical user-ad behaviors for learning effective
user embedding. This issue of modeling new users is normally
defined as the cold start problem. To solve the cold start
problem, we usually exploit the user’s demographic attributes,
such as age, region, and gender. The attribute embedding has
been effectively learned based on the ordinary users’ rich
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Fig. 1. The visualization of a user-APP undirected bipartite graph. A node
with a blue dot denotes a user and a node with a green box denotes an APP.
An edge exists between an APP and a user if the user installs the APP.

experience accumulated in the past and can readily generalize
well to the new users. Since the attribute embedding does
not rely on the historical user behaviors, they are useful for
tackling the cold start problem.

This work explores a new type of attribute embedding
learned from the APP-installation information. The users who
install the same APP might share some common interests
and tend to behave similarly. Meanwhile, a user’s installed
APP lists might encode much richer fine-grained information
about a user than basic demographic information, such as
age, gender, and location. Thus, if exploiting the users’ APP-
installation information effectively, we might significantly
boost the performance of our personalized advertising platform
for the new users. In fact, the APP-installation information
benefits not only the new users but also the regular users.
This is because the learned user’s APP-installation embedding
complements the user’s behavior embedding. Thus, when
incorporating the APP-installation embedding into our model,
we also observed improvements for the regular users’ person-
alized advertising performance.



We formulate the APP-installation embedding as a bipartite
graph embedding problem. The bipartite graph consists of two
types of nodes, including the user nodes and the APP nodes
as visualized in Figure 1. An edge exists between a user node
and an APP node if the user has installed the APP in his/her
mobile phone. Straightforwardly, we could utilize any existing
graph learning methods such as graph convolutional neural
network (GCN) to learn the user node embedding and the
APP node embedding. Nevertheless, a serious issue caused
by imbalanced data distribution makes the training of the
graph learning model extremely challenging. Specifically, for
a popular APP such as Tik Tok, it is installed by billions of
users, generating billions of edges in the graph. In contrast,
a niche APP installed by millions of users can only create
millions of edges in the graph. In this case, graph learning
is dominated by the billions of edges created by the popular
APPs, and the edges from the niche APPs might be swamped.
But the edges from the popular APPs might not encode use-
ful discriminating information since everyone almost installs
them. In contrast, the edges from the niche APPs might be very
useful for describing a user’s characteristics, but that useful
information might not gain enough attention when training
the graph embedding.

In this work, we propose a novel sampling approach to
tackle the imbalanced data distribution issue for learning
effective APP-installation user embeddings. Specifically, we
decompose the user-APP graph into a set of sub-graphs. Each
subgraph contains only a single APP and the users who install
the APP. In the training process, we sample a subgraph for
each iteration and construct training triplets based on users
within the subgraph for embedding learning. In this manner,
the popular APPs and the niche APPs will be involved in
the training process in a fair manner. The offline and online
experiments demonstrate the excellence of our method.

II. RELATED WORK

Factorization based methods. Factorization-based methods
rely on an affinity matrix encoding the connections between
nodes in the graph. They factorize the affinity matrix to
obtain the embedding vectors for nodes. A pioneering work,
Laplacian Eigenmaps [3] aims to keep the embedding of two
nodes close when the weight of the edge connecting these two
nodes is high. It seeks to minimize the weighted summation
of squares of distance between nodes while the weight of
each item in the summation corresponds to the weight of the
edge. It is formulated into an eigenproblem. Nevertheless, it is
extremely slow when solving the eigen problem in the scenario
when the number of nodes is huge. Ahmed et al. [1] propose a
framework for large-scale graph decomposition. They partition
a graph based on minimizing the number of neighboring
vertices. GraRep [5] integrates global structural information
of the graph into the graph learning process. HOPE [17]
learns the graph embedding for nodes with the asymmetric
transitivity, which is a critical property of the directed graph.

Random walks based methods. Random walks are very
useful when we have only access to a part of the graph or
the graph is too large to be modeled globally. DeepWalk [18]
creates multiple random walks, and maximizes the sum of log-
likelihoods for each random walk. It preserves higher-order
proximity between nodes in the graph. node2vec [10] also
encodes higher-order proximity between nodes by maximizing
the probability of occurrence of subsequent nodes. It conducts
a trade-off between breadth-first searches (BFS) and depth-
first searches (DFS) on the graph to generate a more effective
graph embedding than DeepWalk. Walklets [19] additionally
incorporates explicit modeling in random walks. Hierarchical
Representation Learning for Networks (HARP) [7] proposes
a better initialization strategy to avoid the local optima in
optimization.

Neural network based methods. SDNE [21] stacks multiple
layers of non-linear functions to preserve highly non-linear
network structure. It adopts an auto-encoder structure which
uses the embedding to reconstruct its neighbors. DNGR [6]
feeds the positive point-wise mutual information matrix into
a stacked denoising autoencoder to capture higher-order prox-
imity in the learned graph embedding. Nevertheless, SDNE
and DNGR consider the whole graph and take as input the
global neighborhood of each node, which are not efficient for
large-scale graphs. Recently, graph convolution neural network
(GCN) provides an effective and efficient solution by adopting
a configuration with local constraints. These methods can be
categorizes into spatial-based methods [2], [8], [11], [16], [20],
[22] and spectral-based methods [4], [9], [12]–[15]. Spatial-
based methods directly conduct convolution on the original
graph. In contrast, spectral-based methods conduct convolution
on the spectrum of the adjacent matrix of the graph.

III. METHOD

In this section, we introduce graph-based embedding learn-
ing for modeling the APP-installation information of users.

A. Graph Decomposition

decompose

Fig. 2. The visualization of decomposing a user-APP graph into subgraphs.
The user-APP graph G consists of the node set V = {pi}3i=1 ∪ {ui}8i=1
where pi denotes an APP node and ui is a user node. G is decomposed into
three subgraphs {Gi}3i=1. Gi consists of the node set Vi. In this example,
V1 = {p1, u4, u5, u6}, V2 = {p2, u1, u2, u3}, and V3 = {p3, u7, u8, u1}.
Note that, the user u1 is connected with two APPs p2 and p3. Thus, u1 is
included in two subgraphs, G1 and G2.



Definition. We denote the set of APPs used for building the
graph by {si}Ni=1, and denote the set of users by {tj}Mj=1.
They constitute the node set V = {p1, · · · , pN , u1, · · · , uM}.
Meanwhile, the edge set E contains all edges connecting two
nodes {esi,ti}Li=1, where si denotes the index of the user and
ti denotes the index of the user in the i-th edge, esi,ti . That
is, the existence of edge esi,ti means that the user usi has
installed the APP ati . The user-APP graph G is constructed
based on the node set and the edge set {E ,V}. We further
define the subgraph Gi with the node set Vi and the edge set
Ei. Vi contains only one APP node pi and the user nodes
connected to pi. Ei contains all edges which connect the APP
node pi. We visualize the process of decomposing a graph into
a set of subgraphs in Figure 3.

B. Graph Learning

Initialization. We denote the embedding of the user ui

by ui and the embedding of an APP pj by pj . We denote
the indices of users installing the APP ui by Ii. The user
embeddings are randomly initialized. In parallel, an APP
embedding pj is initialized by averaging the embeddings of
users installing the APP:

pj =

∑
k∈Pi

uk

|Pi|
, (1)

where |Pi| denotes the cardinality of the set Pi, i.e., the
number of users installing the APP pi.

Subgraph sampling. As we mentioned, for a subgraph Gi, it
contains an APP node (pi) and the users installing the APP pi.
Let us denote the probability of sampling the subgraph Gi as
P (Gi). A native sampling approach is sampling the sub-graph
with a probability proportional to the number of user nodes in
the subgraph. That is,

P (Gi) =
|Pi|∑N
j=1 |Pj |

,∀i ∈ [1, N ], (2)

where N is total number of APPs and |Pi| denotes the number
of users in the subgraph Gi. In this case, each edge connecting
a user and an APP will be involved in the training process with
an equal probability. Nevertheless, this strategy will make the
embedding learning dominated by the popular APPs with a
huge number of users and the contributions from some niche
APPs with a small number of users will be underestimated.
To make the contributions from different APPs balanced, we
can devise that the sampling probability of each sub-graph to
be equal. That is,

P (Gi) =
1

N
,∀i ∈ [1, N ]. (3)

In this case, the edges based on niche APPs with a small
number of users will be over-sampled, and the edges based on
the popular APPs with a huge number of users will be under-
sampled. Nevertheless, it might lead to repeatedly sampling
for edges from niche APPs, and some edges from the popular
APPs might have little chance to be involved in the training

process. It tends to make the learned embedding prone to over-
fitting due to a lack of diversity in the training samples. To
achieve a balanced sampling and meanwhile suppress over-
fitting, we adopt a trade-off sampling approach. It devises the
probability as

P (Gi) =
|Pi|τ∑N
j=1 |Pj |τ

,∀i ∈ [1, N ], (4)

where τ is a pre-defined positive constant. Normally, we set
0 < τ < 1. It assigns a higher sampling probability to the
subgraph containing more nodes for suppressing over-fitting
and meanwhile achieving a good balance among different
APPs. When τ = 1, it degenerates to the naive sampling
approach defined in Eq. (2). On the other hand, when τ = 0,
it degenerates to the balanced sampling approach defined in
Eq. (3). By default, we set τ = 0.5 in our experiments.

Embedding learning within a subgraph. Let denote the app
embedding with a subgraph by p, the embedding of a user
installing the APP by u+

i and that of a user who does not
install the APP by u−

j . The user and APP embedding learning
seeks to keep a large similarity between p and u+

i . At the
same time, it seeks to maintain a small similarity between p
and u−

j . Straightforwardly, we can learn the user and the APP
embedding through a pairwise loss:

Fig. 3. The visualization of user and APP embedding learning within a
subgraph. In this example, the APP embedding is p (green box). There are
four users installing the APP, {u+

i }4i=1 (blue dots) with the centroid uc

(yellow dot) and four users not installing the APP, {u−
i }4i=1 (red dots).

Lpair =
1

n+

n+∑
i=1

log(1+e−βs(p,u+
i ))− 1

n−

n−∑
i=1

log(1+e−βs(p,u−
i )),

(5)
where n+ denotes the number of users installing the APP and
n− denotes the number of users who do not install, β is a pre-
defined positive constant controlling the softness, and s(·, ·)
measures the cosine similarity between two vectors. In parallel
to the pairwise loss defined above, we devise an additional



centroid loss to further enhance the effectiveness of the learned
embedding. To be specific, we first compute the centroid of
the embeddings of users installing the APP:

uc =
1

n+

n+∑
i=1

u+
i . (6)

Then the centroid loss is computed by

Lcentroid = log(1 + e−βs(p,u+
c )). (7)

To stabilize the training, we update the user embedding and
the APP embedding in an alternating manner:

1) Fix user embedding {u+
i }

N+

i=1 and {u−
i }

N−
i=1, and update

the APP embedding p using the centroid loss Lcentroid.
2) Fix the APP embedding p, and update the positive user

embedding {u+
i }

N+

i=1 using the pairwise loss Lpair.
To improve the training efficiency, we achieve this iterative
training manner in a parallel way by utilizing the stop-gradient
trick. That is, we devise the final loss L = Lcentroid+Lpair. In
the meanwhile, we stop the gradient derived by Lcentroid back-
propagating to {u+

i }
N+

i=1 and {u−
i }

n−
i=1 and meanwhile stop the

gradient from Lpair back-propagating to p and {u−
i }

n−
i=1.

IV. EXPERIMENTS

Dataset. To train the model, we collect the information of
80 million users and 50 thousand APPs. On average, each user
installs around 30 APPs.

A. Offline experiments

Memory. For each APP, we randomly sample 96 users who
have already installed the APP and 96 users not installing
the APP. Note that these APP installation has been involved
in the training process. For each APP-user pair, we compute
the cosine similarity between their embeddings. Then we
threshold the cosine similarity to 0 or 1 to predict whether
the user has installed the APP or not. In Table I, we show
the experimental result. As shown in the table, in the training
data, the learned embedding can achieve a 0.953 precision and
0.981 AUC, which demonstrates the powerful fitting capability
of the learned embeddings.

TABLE I
THE MEMORY PERFORMANCE OF THE LEARNED USER AND APP

EMBEDDINGS. WE REPORT THE PREDICTION PRECISION AND
AREA-UNDER-CURVE (AUC) FOR THE APP INSTALLATION.

Precision 0.953
AUC 0.981

Inference. To evaluate the inference performance of the
learned user and APP embedding, we report the classification
AUC on the user side and that on the APP side. The user-
side AUC is averaged over users. For each user, we test the
prediction accuracy using several APPs the user has installed
and several APPs the user does not install. The APP-side AUC
is measured in a similar manner but is averaged over APPs.

TABLE II
THE INFERENCE PERFORMANCE OF THE LEARNED USER AND APP

EMBEDDINGS. AUC+ DENOTES THE AUC EXCLUDING APPS WITH MORE
THAN 8% USERS AND AUC∗ DENOTES THE AUC EXCLUDING APPS WITH

MORE THAN 2.5% USERS.

AUC AUC+ AUC∗

APP-side 0.797 0.840 0.854
User-side 0.786 0.829 0.844

Note that the testing cases for inference are not involved in
the training process. To be specific, our whole data is collected
during N days. We use the data in the first N − 5 days for
training and that from the last 5 days for testing. Meanwhile,
we also report the AUC without excluding APPs with a huge
number of users. To be specific, we report AUC∗, which
excludes APPs with more than 2.5% users. We also report
AUC+, which excludes that with more than 8% users. As
shown in Table II, the AUC achieved in the inference is lower
than that in Table I. In the meanwhile, by excluding some
APPs with a huge number of users, AUC+ and AUC∗ are
larger than AUC.

Ablation study Here, we investigate the influence of removing
Lcentroid or the stop-gradient strategy through ablation study.
As shown in Table IV, when removing Lcentroid, the AUC
drops from 0.981 to 0.977 and the precision decreases from
0.953 to 0.948. Meanwhile, without the stop-gradient strategy,
both the AUC and the precision decrease considerably.

TABLE III
THE INFLUENCE OF REMOVING Lcentroid OR THE STOP-GRADIENT

STRATEGY IN INFERENCE.

Ours w/o Lcentroid w/o stop-gradient
Precision 0.953 0.948 0.942

AUC 0.981 0.977 0.973

B. Online experiments

We have integrated the user embedding learned from the
APP-installation information as a feature which complements
the existing user embedding learned from historical behaviors.
After launching in our online personalized advertising plat-
form, it has achieved a +1.1% CTR improvement, a +1.7%
CVR boost, a +2.6% increase in the revenue.

TABLE IV
THE ONLINE EXPERIMENTS IN OUR ONLINE ADVERTISING PLATFORM

DURING ONE WEEK.

CTR CVR Revenue
+1.1% +1.7% +2.6%

V. CONCLUSION

In this paper, we exploit the APP-installation information to
assist in modeling the user’s characteristics for personalized
advertising. To this end, we build a user-APP bipartite graph
and adopt a graph convolution network to learn the user



embedding. We use the learned user embedding from our user-
APP graph as the complementary information to the existing
user representation learned from the user profile and the user’s
historical behaviors. After deploying it in our advertising
platform, both CTR and CVR improve considerably.
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