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Summary

Many data types in machine learning and Al can be viewed as “vectors”.

Vectorized data computing (VDC) is crucial for machine learning and is also much
beyond machine learning. It may grow into its own discipline in the near future.

Vector databases can be viewed as one component in vectorized data computing.
In most applications, results from vector databases (such as similarity search) are
quite crude and can serve as the initial screening step (e.g., ads candidate
retrieval). Al and machine learning models are necessary for accurate predictions.
Keys in big models: 1) accuracy 2) training/serving efficiency 3) distributed training.
For example, training trillion-parameter models for high-accuracy recommender

systems.. Many novel algorithms and infrastructure systems are presented.

Privacy and Al model security have become increasingly critical in Al.



Embeddings (Vectors): Memory for Al and LLM
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Tasks involving embeddings: fine-tuning models, compact storage, similarity search,
weighted similarity search using MIPS (maximum inner product search), fast neural ranking,
downstream learning models, privacy protection, and prompt engineering, etc.



Major Use Examples of Vectorized Data

LLM (large language models) training: A few major players and many startups.

Retrieval-augmented generation (RAG) for LLM models:
o More cost-effective than fine-tuning. Reducing hallucinations. Vector DB is a key.

LLM/AIGC applications:
o Vector database (DB) is crucial for applications of LLM/AIGC.

Recommender systems (in the broad sense):
o Search, advertising (ads), feed, recommendation.
o Major revenue generators of Al

Other traditional uses of vectorized data:
o Machine learning models: risk, fraud, trust, security
o Knowledge-graph embeddings (KGE), e.g., for question-answering (QA)
o Vectors generated from raw texts without training, e.g., n-grams, shingles.



Introduction to Typical Vector Database (DB)
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The Role of Vector DBs in Search and Ads

Embeddings have become the crucial component in search and ads.
Embedding-based retrieval (EBR) is the key step for retrieval.

EBR, ANN, Vector DBs etc provide only very crude results, and hence they can only serve as
an important intermediate step in the pipeline of ads, search, and recommendation.

Al models for generating embeddings and models for prediction/rankings are crucial.
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A Simple Demo

e Amazon movie review: LLM + embedding + Al models :

11,000 movie reviews (raw texts) => LLM => 11,000 embeddings in 384 dimensions.
1,000 embeddings as test (query) vectors , 10,000 base vectors.

HNSW and KNN classifiers to predict review ratings (1-5) => 60% accuracy.
ABC-Boost trees with 10,000 base vectors for training = > 70% accuracy.

MLP neural networks => 70% accuracy.

MLP neural networks + DCNV2 (deep feature crossing) => 71%.

MLP neural networks + BFI (8-block blockwise feature interactions) => 71%.
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Only using embeddings and their similarities is typically not sufficient. Many applications
will need to build Al models on top of the embeddings from LLM or other methods.


https://arxiv.org/pdf/2306.15881.pdf

Vector Databases for Improving LLM

Vector databases can also be used for improving LLM. A few examples are:

e History Memory LLM
o Contextual Memory: By storing contextually relevant information in vector databases,
the language model can access and recall it at a later time

e ANN and MIPS for LLM
o Next word prediction as an MIPS when number of tokens is large

e Multi-Modal Integration in LLM
o LLM leverage vector databases to store and retrieve multi-modal embeddings. This
enables the LLM to associate relevant information across different modalities



History Memory LLM
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History Memory LLM Use Cases

Customer Support
o Understand continuous customer queries and provide relevant responses

Data Analysis
o Process vast amounts of data to assist in extracting valuable insights

Domain-Specific Language Models, e.g., legal
o Analyze long legal contracts, and regulations and assist in drafting legal documents
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ANN and MIPS in LLM

Having more tokens (i.e., bigger vocabulary size) can improve the performance of LLM
Creating more token generates fewer hallucination

Having too many tokens make the training/inference of the last layer in the LLM slow
o It becomes an MIPS (max inner product search) task

Having a lot of tokens also means the token embedding layer super large
This may require highly efficient ANN search to make the training and inference efficient

Also, the most work on Pb-Hash can help deal with super large vocabulary problem.
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Privacy for LLM and Vectorized Data

Protecting user data (e.g., embeddings) is a major challenge faced by applications of LLM.

Differential privacy (DP) works by adding (sufficient) noise to every dimension of the vector

Noise

The noises to be added are typically quite significant in order to rigorously satisfy the
privacy requirement. Thus, DP-based algorithms usually suffer from poor performance.
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Privacy for LLM and Vectorized Data

New DP algorithms based on (e.g.,) random projections (RP) and 1-bit (sign) quantization arXiv,

Green curve: directly adding noise to the original data leads to poor accuracy (y-axis).
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Our methods: At € <= 5 ~ 10, our new DP methods achieves good accuracy.
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Privatized User Data and Embeddings
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Our users can securely share privatized embeddings with third parties for building Al
models. Alternatively, users can entrust us with the responsibility of constructing models
on their behalf, leveraging our state-of-the-art machine learning platforms and expertise. 16



Our Prior Works Related to Privacy

ICLR’23, Improved Convergence of Differential Private SGD with Gradient Clipping

ArXiv'23, Differential Privacy with Random Projections and Sign Random Projections

ArXiv'23, Differentially Private One Permutation Hashing and Bin-wise Consistent Weighted Sampling

ICML’'23, Regression with Label Permutation in Generalized Linear Model

ICML'23, One-Step Estimator for Permuted Sparse Recovery

KDD’23, OPORP: One Permutation + One Random Projection

SIGIR’23, Building K-Anonymous User Cohorts with Consecutive Consistent Weighted Sampling (CCWS)

ArXiv'22, k-Median Clustering via Metric Embedding: Towards Better Initialization with Differential Privacy

NeurlPS’22, Breaking the Linear Error Barrier in Differentially Private Graph Distance Release

IEEE CNS’'22, NL2GDPR: Automatically Develop GDPR Compliant Android Application from Natural Language

ISIT'22, Distances Release with Differential Privacy in Tree and Grid Graph
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https://arxiv.org/pdf/2204.14247.pdf
https://pltrees.github.io/publication/NL2App2022.pdf
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Al Model Security

In addition to privacy, the Al model security has become increasingly important:

e FACT SHEET: Biden-Harris Administration Secures Voluntary Commitments from Leading
Artificial Intelligence Companies to Manage the Risks Posed by Al, link,
e The Blueprint for an Al Bill of Rights, link

The list of our prior works on Al model security:

AAAI 2023, Defending Backdoor Attacks on Vision Transformer via Patch Processing

NeurlPS 2022, Marksman Backdoor: Backdoor Attacks with Arbitrary Target Class

KDD 2022, Integrity Authentication in Tree Models

ICDE 2022, Identification for Deep Neural Network: Simply Adjusting Few Weights!

AAAI 2022, DeepAuth: A DNN Authentication Framework by Model-Unique and Fragile Signature Embedding
NeurlPS 2021, Backdoor Attack with Imperceptible Input and Latent Modification

ICCV 2021, LIRA: Learnable, Imperceptible and Robust Backdoor Attacks

ICCV 2021, Robust Watermarking for Deep Neural Networks via Bi-level Optimization
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https://arxiv.org/pdf/2206.12381.pdf
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https://arxiv.org/pdf/2205.15444.pdf
https://ieeexplore.ieee.org/document/9835648
https://ojs.aaai.org/index.php/AAAI/article/view/21193/20942
https://proceedings.neurips.cc/paper/2021/file/9d99197e2ebf03fc388d09f1e94af89b-Paper.pdf
https://openaccess.thecvf.com/content/ICCV2021/papers/Doan_LIRA_Learnable_Imperceptible_and_Robust_Backdoor_Attacks_ICCV_2021_paper.pdf
https://openaccess.thecvf.com/content/ICCV2021/papers/Yang_Robust_Watermarking_for_Deep_Neural_Networks_via_Bi-Level_Optimization_ICCV_2021_paper.pdf
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Vector similarity functions

Vector compressions

Vector similarity search

Maximum inner product search (MIPS)
Fast neural ranking

GPU computing

GCWSNet, hashing algorithms
Boosted trees, ABC-boost

Privacy

Security

Distributed, adaptive, and federated learning

Others: generative Al models, NLP, knowledge graphs, multi-modal, cross-modal, advertising



Vector Similarity Functions

Consider vectors in D dimensions BT ucRP
D can be (e.g.,) 1024 or much larger [ ] v € RP
D I
, . d = . 2
Inner product: @ = E U;V; Euclidean distance: = |u; — v
i=1 =1
The popular Another popular similarity is

measure of Zf)—l U the RBF (Gaussian) kernel

similarity is  © = _ A(1—p)
the cosine \/sz):l uzz \/Zfil Uz'2 RBF =e¢ , A>0
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More Vector Similarity Functions
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Early Works on Lp Distance (or Norms)

D
Lp distance: dp = E ‘Uz _ ?)i’p, p > 0
=1

Estimators and Tail Bounds for Dimension Reduction in [,
(0 < a < 2) Using Stable Random Projections

SODA 2008

Very Sparse Stable Random Projections for Dimension
Reductionin/, (0 < o <2) Norm

KDD 2007

D
Lp norm: [, = Z lui|?, p >0
i=1

Compressed Counting

SODA 2009

Improving Compressed Counting

UAI 2009
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https://dl.acm.org/doi/10.5555/1347082.1347084
https://statweb.rutgers.edu/pingli//papers/CompressedCountingSODA2009TechReport2009COLT2011NIPS2012.pdf
https://dl.acm.org/doi/10.1145/1281192.1281241
https://www.auai.org/uai2009/papers/UAI2009_0130_3c7f00baafc699511c26697b0e87ecff.pdf

Anomaly Detection using Lp Norms or Entropy

NIPS 2008

A Unified Near-Optimal Estimator For Dimension Reduction in /,,
(0 < a < 2) Using Stable Random Projections

Trevor J. Hastie
Department of Statistics
Department of Health, Research and Policy
Stanford University
hastie@stanford.edu

Ping Li
Department of Statistical Science
Faculty of Computing and Information Science
Cornell University
pingli@cornell.edu

A New Algorithm for Compressed Counting with
Applications in Shannon Entropy Estimation in Dynamic

COLT 2011 Data

Ping Li
Department of Statistical Science
Cornell University
Ithaca, NY 14853
pingli@cornell.edu

Cun-Hui Zhang
Department of Statistics and Biostatatistics
Rutgers University
New Brunswick, NJ 08901
czhang@stat.rutgers.edu

Entropy Estimations Using Correlated Symmetric
NIPS 2012 Stable Random Projections

Cun-Hui Zhang
Department of Statistics and Biostatistics
Rutgers University
New Brunswick, NJ 08901
czhang @stat.rutgers.edu

Ping Li
Department of Statistical Science
Cornell University
Ithaca, NY 14853
pingli@cornell.edu

One major application is to detect (e.g.,)
DDoS network attacks using entropy.
Figure re-generated from a DARPA report.

source IP address: entropy value
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AISTATS 2017

Binary and Multi-Bit Coding for Stable Random Projections
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http://proceedings.mlr.press/v54/li17c/li17c.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/6dfe08eda761bd321f8a9b239f6f4ec3-Paper.pdf
http://proceedings.mlr.press/v19/li11a/li11a.pdf
https://proceedings.neurips.cc/paper/2012/file/5e76bef6e019b2541ff53db39f407a98-Paper.pdf

Compressed Sensing using (Sign) Projections

Compressed Counting Meets Compressed Sensing

Exact Sparse Recovery with LO Projections COLT 2014

KD D 20 1 3 Ping Li PINGLI@STAT.RUTGERS.EDU
) . —_—_— . Department of Statistics and Biostatistics, Department of Computer Science,
Ping [j' _ ) Cun-H_m.Zhang ) o Rutgers University, Piscataway, NJ 08854, USA
Department of Statistical Science Department of Statistics and Biostatistics 2
Cornell University Rutgers University Cuiis Ehisig R T RTINS AT
g ’ 8 55 Sity Department of Statistics and Biostatistics, Rutgers University, Piscataway, NJ 08854, USA
Ithaca, NY 14853, USA New Brunswick, NJ 08901, USA

pingli@cornell.edu cunhui@stat.rutgers.edu Tong Zhang TZHANG @STAT.RUTGERS.EDU

Department of Statistics and Biostatistics, Rutgers University, Piscataway, NJ 08854, USA

Compressed Sensing with Very Sparse Gaussian Random Projections One Scan 1-Bit Compressed Sensing

AISTATS 2015
Ping Li Cun-Hui Zhang AISTATS 2016

Department of Statistics and Biostatistics Department of Statistics and Biostatistics
Department of Computer Science Rutgers University
Rutgers University Piscataway, NJ 08854, USA
Piscataway, NJ 08854, USA cunhui@stat.rutgers.edu

pingli@stat.rutgers.edu
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http://proceedings.mlr.press/v35/li14.pdf
https://arxiv.org/pdf/1302.0895.pdf
http://proceedings.mlr.press/v38/li15c.pdf
http://proceedings.mlr.press/v51/li16g.pdf

Machine Learning using Lp Distance

D
Lp distance: dp s |Uz _ UZ.’P’ D > 0

1=1

Approximating Higher-Order Distances Using Random Projections

UAI 2010

Ping Li" Michael W. Mahoney' Yiyuan She
Department of Statistical Science Department of Mathematics Department of Statistics
Faculty of Computing and Information Science Stanford University Florida State University
Cornell University, Ithaca, NY 14853 Stanford, CA 94305 Tallahassee, FL. 32306
pingli@cornell.edu mmahoney @cs.stanford.edu yshe@stat.fsu.edu

(Perhaps surprising!) For many datasets, the best
classification accuracy is achieved at p>2, using
m-nearest neighbor classifier (m =1, 5, 10).
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https://arxiv.org/pdf/1203.3492.pdf

ABC-Boost Trees for Lp Regression
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ArXiv'22, pGMM Kernel Rearession and Comparisons with Boosted Trees

ArXiv'22, Package for Fast ABC-Boost

GlItHub, https://github.com/pltrees/abcboost

tree split criterion
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https://arxiv.org/pdf/2207.08667.pdf
https://arxiv.org/pdf/2207.08770.pdf
https://github.com/pltrees/abcboost
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https://arxiv.org/pdf/2207.08667.pdf

PGMM Kernel versus Boosted L2 Regression

ArXiv'22, pGMM Kernel Regression and Comparisons with Boosted Trees

(MSE) for each method, over the range of regularization coefficients and parameters.

Table 1: Datasets for testing regression algorithms. We report the best test mean square erry

dataset # train # test dim LR RBF GMM pGMM  Ls-Boost
ENBcool 384 384 8 10.24 3.20 1.70 1.28 1.21
ENBheat 384 384 8 9.00 0.495 0.191 0.188 0.186
Airfoil 752 751 5 24.26 8.35 7.50 3.56 3.09
CPUsmall 4096 4096 12 102.12 9.05 799 7.05 6.89
CPU 4096 4096 21 98.35 6.42 5.17 5.03 4.69
WECPerth 5000 5000 32 1.1x10° 23x10% 24x10% 23x10® 2.5x 108
Cadata 10320 10320 8 4.8x10° 38x10% 24x10° 24x10° 2.1 x10°
Housel6H 11392 11392 16 2.1 x10° 1.3x10° 1.2x10° 1.1x10° 1.0x 10°
Housel6L 11392 11392 16 1.9x10° 1.1 x10° 9.9x 108 9.4x 108 8.6 x 108
CASP 22865 22865 9 26.63 23.94 15.30 15.29 13.51
Splice 1000 2175 60 0.1205 0.0967 0.0589 0.0589 0.0352
Mnoisel 2519 454 784 0.0484 0.0344 0.0311 0.0169 0.0145
Mnoise6 2519 454 784 0.0215 0.0165 0.0195 0.0129 0.0131
Mimage 2538 10524 784 0.0540 0.0323 0.0263 0.0125 0.0149
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Min-Max (MM) Kernel and pGMM Kernel
BTl ] ucR? ] veRP

Zi’;l min{ui, ’UZ'}

Zi’;l max{u;, v; }

MinMax =

, =0, 920

Most natural data vectors are non-negative. Embedding vectors using “RelLu” activation are
also non-negative. For general data vectors with negative entries, we do the following:

Zfi)l min(ﬁ,-, z}l)
>2D max(ii;, ;)

For example, when D = 2 and u = [-5 3], the transformed data vector becomesu =[0 5 3 0]

GMM(u,v) =

Uzi—1 =uj, uj =0 if u; >0
Upi—1 =0, uy;j=-u; if u; <0

pGMM(u,v;p) = Z?fl (min{ai’@i})p

A tuning parameter p can also be introduced: 2D ~ ~ \D
Zi:l (max{uia U’L}) 29



Min-Max (MM) Kernel and pGMM Kernel

0-Bit Consistent Weighted Sampling Linearized GMM Kernels and Normalized
Random Fourier Features

KDD 2015 KDD 2017

Nystrom Method for Approximating the GMM Kernel Tunable GMM Kernels
ArXiv 2016 ArXiv 2017
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https://statweb.rutgers.edu/pingli/papers/0bitCWS.pdf
https://dl.acm.org/doi/pdf/10.1145/3097983.3098081
https://arxiv.org/pdf/1607.03475.pdf
https://arxiv.org/pdf/1701.02046.pdf

Min-Max (MM) Kernel and pGMM Kernel

Table 1: Public (UCI) classification datasets and l>-regularized kernel SVM results. We
report the test classification accuracies for the linear kernel, the best-tuned RBF kernel, the original
(tuning-free) GMM kernel, the best-tuned eGMM kernel, and the best-tuned pGMM kernel, at their
individually-best SVM regularization C' values.

Dataset # train  # test # dim linear RBF GMM eGMM pGMM
Car 864 864 6 7153 9491 98.96 99.31 99.54
Covertype25k 25000 25000 54  62.64 82.66 82.65 88.32 83.25
CTG 1063 1063 35  60.59 89.75 88.81 88.81  100.00
DailySports 4560 4560 5625 77.70 97.61 99.61 99.61 99.61
DailySports2k 2000 7120 5625 72.16 93.71  98.99 99.00 99.07
; Dexter 300 300 19999 92.67 93.00 94.00 94.00 94.67
ArXiv 2017 Gesture 4937 4936 32 3722 61.06 6550 66.67 66.33
ImageSeg 210 2100 19 83.81 91.38 95.05 95.38 95.57
I[solet2k 2000 5797 617 93.95 95.55 95.53 95.55 95.53
MHealth20k 20000 20000 23 72.62 82.65 85.28 85.33 86.69
MiniBooNE20k 20000 20000 50 88.42 93.06  93.00 93.01 93.72
MSD20k 20000 20000 90 66.72 68.07 71.05 71.18 71.84
Magic 9150 9150 10 78.04 84.43 87.02 86.93 87.57
Musk 3299 3299 166  95.09 99.33 99.24 99.24 99.24
Musk2k 2000 4598 166  94.80 97.63  98.02 98.02 98.06
PageBlocks 2737 2726 10 9587 97.08  96.56 96.56 97.33
Parkinson 520 520 26 61.15 66.73 69.81 70.19 69.81
PAMAP101 20000 20000 51 76.86 96.68 98.91 98.91 99.00
PAMAP102 20000 20000 51 81.22 95.67 98.78  98.77 98.78

PAMAP103 20000 20000 51 85.54 97.89  99.69 99.70 99.69


https://arxiv.org/pdf/1701.02046.pdf

Min-Max (MM) Kernel and pGMM Kernel

PAMAP103 20000 20000 51 85.54 97.89  99.69 99.70  99.69
PAMAP104 20000 20000 51 84.03 97.32  99.30 99.31  99.30
PAMAP105 20000 20000 51 79.43 97.34 9922 99.24  99.22
RobotNavi 2728 2728 24 69.83 90.69 96.85 96.77  98.20
Satimage 4435 2000 36 7245 85.20 90.40 91.85  90.95
SEMG1 900 900 3000 26.00 43.56 41.00 41.22  42.89
SEMG2 1800 1800 2500 19.28 29.00 54.00 54.00 56.11
Sensorless 29255 29254 48 61.53 93.01 99.39 99.38  99.76
Shuttle500 500 14500 9 91.81 9952 99.65 99.65  99.66
SkinSeg10k 10000 10000 3 9336 9974 99.81 99.90  99.85
SpamBase 2301 2300 57 85.91  92.57  94.17 94.13 95.78
ArXiv 2017 Splice 1000 2175 60 85.10 90.02 9522 96.46  95.26
Theorem 3059 3059 51 67.83 7048 T71.53 71.69 71.53
Thyroid 3772 3428 21 9548 97.67 98.31 9834  99.10
Thyroid2k 2000 5200 21 9490 97.00 98.40 98.40  98.96
Urban 168 507 147 6252 5148 66.08 65.68  83.04
Vertebral 155 155 6 80.65 8323 89.04 89.68  89.04
Vowel 264 264 10 39.39 94.70 96.97 98.11  96.97
Wholesale 220 220 6 89.55 9091 9318 93.18 93.64
Wilt 4339 500 5 62.60 8320 87.20 87.60  87.40
YoutubeAudiolOk 10000 11930 2000 41.35 4863 50.59  50.60  51.84
Youtube HOG10k 10000 11930 647 62.77 66.20 68.63 68.65  72.06
YoutubeMotion10k 10000 11930 64 2624 2881 3195 33.05 32.65

YoutubeSaiBoxes10k 10000 11930 7168 46.97 49.31 51.28 51.22 52.15
YoutubeSpectrum10k 10000 11930 1024 26.81 33.54 39.23 39.27 41.23


https://arxiv.org/pdf/1701.02046.pdf

Min-Max (MM) Kernel and pGMM Kernel

Table 2: Datasets in group 1 are from the LIBSVM website. Datasets in group 2 were used by
for testing deep learning algorithms and tree methods.

Group Dataset # train  # test # dim linear RBF GMM eGMM pGMM
Letter 15000 5000 16 61.66 97.44 97.26 97.68  97.32
1 Protein 17766 6621 357 69.14 70.32 70.64 71.03  71.48
SensIT20k 20000 19705 100 80.42 83.15 84.57 84.69  84.90
Webspam20k 20000 60000 254 93.00 97.99 97.88 98.21  97.93
. M-Basic 12000 50000 784 89.98 97.21 96.34 96.47  96.40
ArXiv 2017 M-Image 12000 50000 784 70.71 77.84 80.85 81.20  89.53
M-Noisel 10000 4000 784 60.28 66.83 71.38 T71.70  85.20
M-Noise2 10000 4000 784 62.05 69.15 7243 72.80  85.40
M-Noise3 10000 4000 784 65.15 71.68 7355 7470  86.55
2 M-Noise4 10000 4000 784 6838 7533 76.05 76.80  86.88
M-Noise5 10000 4000 784 7225 7870 79.03 79.48 87.33
M-Noise6 10000 4000 784 78.73 8533 8423 84.58  88.15
M-Rand 12000 50000 784 78.90 8539 8422 84.95  89.09
M-Rotate 12000 50000 784 47.99 89.68 84.76  86.02  86.52
M-RotImg 12000 50000 784 3144 4584 4098 42.88  54.58
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Boosted Trees (ABC-Boost) vs. pGMM Kernel

Table 4: Test error rates of five additional datasets reported in [4] [7]. The results in group 1 are
from [4], where they compared kernel SVM, neural nets, and deep learning. The results in group 3
are from [7], which compared four boosted tree methods with deep nets.

Group Method M-Basic M-Rotate M-Image M-Rand M-Rotlmg
SVM-RBF 3.05% 11.11% 22.61% 14.58% 55.18%
SVM-POLY 3.69% 15.42% 24.01% 16.62% 56.41%
J NNET 4.69% 18.11% 27.41% 20.04% 62.16%
DBN-3 3.11% 10.30% 16.31% 6.73% 47.39%
) SAA-3 3.46% 10.30% 23.00% 11.28% 51.93%
ArXiv 2017 DBN-1 3.94%  14.69%  16.15%  9.80%  52.21%
Linear 10.02% 52.01% 29.29% 21.10% 68.56%
RBF 2.79%% 10.30% 22.16% 14.61% 54.16%
2 GMM 3.80% 15.24% 19.15% 15.78% 59.02%
eGMM 3.53% 13.98% 18.80% 15.05% 57.12%
pGMM 3.63% 13.44% 10.47% 10.91% 45.42%
epGMM 3.29% 11.81% 10.04% 10.57% 44.27%
mart 4.12% 15.35% 11.64% 13.15% 49.82%
3 abc-mart 3.69% 13.27% 9.45% 10.60% 46.14%
robust logit 3.45% 13.63% 9.41% 10.04% 45.92%

https://github.com/pltrees/abcboost . , , i
RS ATLUD. COMDITees abe00St be-robust-logit  3.20%  11.92%  8.54%  9.45%  44.69%



https://arxiv.org/pdf/1701.02046.pdf
https://github.com/pltrees/abcboost

Do We Still Care about Kernels?

Do neural nets learn all nonlinearities? Largely true. For example, we ourselves
haven’t observed a case in which the Gaussian kernel outperforms the deep nets.

On the other hand, the family of pGMM kernels is special. The discontinuity of the
kernels is probably (part of) the reason why pGMM kernels can in many cases
outperform neural nets. Tree models are another example of discontinuous models,
and hence it is not surprising that tree models often outperforms neural nets.

D .
MinMazx = 2=y min{us, vi)

Zzpzl max{u;, v; }
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Accuracy

CIKM 2022

Ping Li and Weijie Zhao

Cognitive Computing Lab
Baidu Research

{lipingll, weijiezhao}@baidu.com
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GCWSNet: Generalized Consistent Weighted Sampling
for Scalable and Accurate Training of Neural Networks

10900 NE 8th St. Bellevue, WA 98004, USA

Training neural nets (L = 2 layer and
H = 200 hidden nodes) on CWS
hashed data for pGMM kernels, we
observe noticeable improvement
over directly training neural nets on
the original data (black dashed)
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https://arxiv.org/pdf/2201.02283.pdf

Theory of the GMM Kernel

GMM kernel and cosine are surprisingly related, under symmetric data assumption.

Ugi—1 =uj, u2; =0 if u; >0 Y2 min(d;, ;)
figi1 =0, figs=-wu; ifuj<0 CGMMuv)= 5 S

D ey Uils 1 -
g = - p)/2
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Theory of the GMM Kernel

Ping Li Cun-Hui Zhang
Department of Statistics and Biostatistics Department of Statistics and Biostatistics
Department of Computer Science Rutgers University
Rutgers University Piscataway, NJ 08854, USA
Piscataway, NJ 08854, USA cunhui@stat.rutgers.edu

pingli@stat.rutgers.edu



Theory of the GMM Kernel

1) % &
D i Uils P min(@;, o) 1- /01— p)/2

GMM(u,v) =

IO pr—
D D
\/Zizl U7 \/Zi:l v?

e \We consider the model that the coordinates are i.i.d. samples from a symmetric
bivariate distribution. We study the limit when the dimension D goes to infinity.

e Assuming bounded 2nd moment, the cosine converges to the true correlation.
e Assuming only bounded 1st moment, GMM converges to a function of correlation.

e Thus, GMM is substantially more robust than the cosine. In other words, if the data
do not have bounded 2nd moment, then it is meaningless to use the cosine.

e Interestingly, even when the data are perfectly Gaussian (in this case, the cosine
will be optimal), using GMM only very slightly loses the accuracy.

_)
>2D max(@;, 9;) 1+ (1—p)/2
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www2017  Theory of the GMM Kernel

Use GMM and cosine to estimate the true correlation. In order to have bounded MSE
(variance), GMM and cosine require, respectively, bounded 2nd and 4th moments.

Dimension D = n = 1000, or 10000. v = 2.5 means bounded 2.5-th moment.
The GMM converges nicely and the variance follows the theoretical prediction.
The estimates by the cosine do not have bounded MSE (variance).

The GMM kernel is substantially more robust than the cosine.
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Theory of the GMM Kernel

WWW 2017

e \When data have bounded v = 4.5-th moment, the cosine estimates exhibit bounded
MSE (variance), which is substantially larger than the MSE of the GMM estimates.

e Therefore, the GMM estimates will be substantially more accurate in usual realistic
situations in where the data have some bounded moments with outliers.
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WWW 2017

e For data with bounded v = 8-th moment, the cosine and GMM have similar accuracy.

oX 10~ ' ' ’
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Theory of the GMM Kernel

X 10°° ’ ’ ’
v=8,n=1000 —GMM
-= Theor.
1.5h : I’ Y ---COS i
1, .Ill. \\‘ :
05 ," ‘\\
s 0 05
p

41



WWW 2017

e \When data are perfectly Gaussian (which is almost never the case in practice), using

Theory of the GMM Kernel

the GMM only slightly loses accuracy compared to using the cosine.

e Conclusion: practitioners can safely replace the cosine with GMM !

2

MSE

Warning: the GMM kernel is nonlinear (while cosine is linear) => need CWS hashing.
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Sign Cauchy Projections and Chi-Square Kernel

Ping Li Gennady Samorodnitsky John Hopcroft
Dept of Statistics & Biostat. ~ ORIE and Dept of Stat. Science  Dept of Computer Science
Dept of Computer Science Cornell University Cornell University
Rutgers University Ithaca, NY 14853 Ithaca, NY 14853
pingli @stat.rutgers.edu gs18 @cornell.edu jeh@cs.cornell.edu

43


https://proceedings.neurips.cc/paper/2013/file/3210ddbeaa16948a702b6049b8d9a202-Paper.pdf

The Chi-Square Similarity

arXiv 2023. HNSW + chi-square similarity achieves better retrieval and KNN classification on public data.
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https://arxiv.org/pdf/2306.07607.pdf
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Vector similarity functions

Vector compressions

Vector similarity search

Maximum inner product search (MIPS)
Fast neural ranking

GPU computing

GCWSNet, hashing algorithms
Boosted trees, ABC-boost

Distributed, adaptive, and federated learning
Privacy

Security

Others: generative Al models, NLP, knowledge graphs, multi-modal, cross-modal, advertising



Benefits of Vector Compressions

Save storage (memory) space
o Long vectors => shorter vectors
o Real value entries => integer or 1-bit entries
o Examples: OPORP, sign-full random projections, and CWS

Provide indexing
o Sign Gaussian random projections
Sign Cauchy random projections
Sign Stable random projections
Sign random Fourier features (SignRFF)
b-bit Minwise hashing
b-bit consistent weighted sampling (CWS)

O O O O O

Provide privacy
Improve re-ranking efficiency

Reduce dimension of big models
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https://pltrees.github.io/publication/KDD_2023_OPORP.pdf
https://arxiv.org/pdf/1805.00533.pdf
https://openreview.net/pdf?id=ZfaEZyQDrok

One Permutation + One Random Projection

KDD 2023, OPORP: One Permutation + One Random Projections

e OPORP is a variant of count-sketch with fixed-length binning and normalization.
e The estimation variance is substantially reduced due to binning scheme and normalization.

e The analysis of the proposed OPORP leads to the normalized estimator and its variance,
for “very sparse random projections” (VSRP, KDD 2006).

e Further developments:
o OPORP + differential privacy (DP), e,g., arXiv 2023.
o OPORP + quantization, e.g., sign-full random projections (AAAI 2019).
o OPORP + big models, i.e., OPORP samples to replace or augment original features.
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https://pltrees.github.io/publication/KDD_2023_OPORP.pdf
https://hastie.su.domains/Papers/Ping/KDD06_rp.pdf
https://arxiv.org/pdf/2306.01751.pdf
https://arxiv.org/pdf/1805.00533.pdf

An lllustration of the OPORP Procedure

KDD 2023

Original vector
Permuted vector

Random vector

Aggregation

Normalized

1-7+4 = -4,
(-4)A2 +(-1)"2+(2)"2 = 16+1+4 = 21

11 0 4 3 8
7 4 8 9 0
-1 +1 +1 4+
-4 -1
-0.8729 -0.2182
+8-9+0 = -1, -3+11-6 = 2

(-0.8729)A2 + (-0.2182)*2 + (0.4364)"2 = 1.0

14 1 9
3 11 6
-1 +1 -1
2
0.4364

-4/square root(21) = -0.8729
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https://pltrees.github.io/publication/KDD_2023_OPORP.pdf

Connection to (Sparse) Random Projections

KDD 2023

veRP M T TN

v e RP [ ]

X

The entries of the projection matrix {7“7;7' } can

be Gaussian, {-1, +1} with equal probability,
other Gaussian-like distributions, or even
heavy-tailed distributions such as Cauchy.

The projection matrix can be very sparse, e.g.,
“very sparse random projections” (KDD 2006).

{TZJ }z—l g=1

P xk

r € RF

y € R*

Count-sketch and OPORP use
one projection vector (instead of
a matrix) which is scrambled by
the random permutation vector. It
can be viewed as a special very
sparse projection matrix.
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https://pltrees.github.io/publication/KDD_2023_OPORP.pdf
https://hastie.su.domains/Papers/Ping/KDD06_rp.pdf

OPORP Procedure
KDD 2023

e Generate a permutation 7 : [D] — [D].

e Apply the same permutation to all data vectors, e.g., u,v € R”.

e Generate a random vector r of size D, with i.i.d. entries r; of the following first four moments:
E(r;)=0, E@F})=1, E@})=0, E@rH=s

Our calculation will show that s = 1 leads to the smallest variance of OPORP.
e Divide the D columns into k bins. There are two binning strategies:

1. Fixed-length binning scheme: every bin has a length of D/k.
2. Variable-length binning scheme: the bin lengths follow a multinomial distribution
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https://pltrees.github.io/publication/KDD_2023_OPORP.pdf

OPORP Samples

KDD 2023
D

D
ij — E Ui’[’ilz‘j’ y] — E ’U,i’]"i_[z-j, J = 1’2, s k'

where I;; is a random variable determined by one of the following two binning schemes:

1. (First binning scheme) Fixed-length binning scheme: every bin has a length of D/k. We
assume that D is divisible by k, if not, we can always pad zeros.

2. (Second binning scheme) Variable-length binning scheme: the bin lengths follow a multinomial
distribution multinomial(D,1/k,1/k,....,1/k) with k bins.

Specifically, I;; = 1 if the original coordinate ¢ € [1, D] is mapped to bin j € [1,k]; I;; = 0 otherwise.
Wherever necessary, we will use I ;; and I ;; to differentiate the two binning schemes.
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https://pltrees.github.io/publication/KDD_2023_OPORP.pdf

The Un-normalized Estimator

Given the OPORP samples: KDD 2023
D D
Xry = Zuz""ilija Y; = Zvir,;lij, J — 1, 2, . k
1=1 1=1
we hope to estimate the inner product and the cosine:
D
D Zizl U;v;

inner product: g = E U;V; cosine

: L=
D D
i=1 \/Zizl u; \/Zi:l vf

Q= Z?’:l LY the un-normalized estimator, ie., the inner product of the samples
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The Un-normalized Estimator

KDD 2023
THEOREM 3.2. PN . R
=) i1 %Y;

E(a) = a,

2 1, &, 2 L\ D-k

A 2 2 2 22 B

Var(al):(s-—l)Zuv +E a +Zui20i—22uivi m,

j=1 \ =1 =1 i=1 )

D ( D D D \
Var(&z)z(s—l)Zulzv;2+ a2+Zu?ZU?—22u?v? :

i=1 \ i=1 i=1 i=1 )
ay and ao for two binning schemes, respectively. We must use s = 1 for OPORP
D—k

variance reduction factor due to the fixed-length binning scheme (the 1st scheme)

D—]_ 53
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The Un-normalized Estimator

KDD 2023
What will happen if we repeat OPORP m times?
1 T D o D D D Dk
Var(ay;m repetitions) = = (s —1) Zl u?v? 4 7 <a2 + El uf Zl Uf —2 ;ufzf> m]
1 T D ] D D D
Var(as; m repetitions) = — [(s — 1 urvs 4 = | @® 4 u? v2 — 9 w2l .

This is exactly the variance formula for “very sparse random projections” in KDD 2006.
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Very Sparse Random Projections (VSRP)

KDD 2006  Very Sparse Random Projections

Ping Li Trevor J. Hastie Kenneth W. Church
Department of Statistics Department of Statistics Microsoft Research VSRP USG? a \_/ery .
Stanford University Stanford University Microsoft Corporation sparse projec’uon matrix
Stanford CA 94305, USA Stanford CA 94305, USA Redmond WA 98052, USA
pingli@stat.stanford.edu hastie@stanford.edu church@microsoft.com

—1 with pI'Ob. 1/(23)

D D
Tj = Z“ﬂ'ija Yj = Z”ifrz‘j, VR T rij = Vs X 0 with prob. 1—1/s
. - - with prob. S
i itl I b. 1/(2

1< Zk Tl
Gosrp = —ZL]JJ iy = g=1"71 -, The variance of the un-normalized
k j=1 pI > estimator of inner product is in KDD 2006.
=1+ ] J= 1JJ

D
U2

D
1.
Var{@usvp) = Z <a +ZufZ'i + (s —3

1=1 =1 1=1

Mo

2 2 The variance of the normalized estimator
Ui Vs of VSRP can be shown only in this paper.
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The Normalized Estimator of OPORP
Zk L5Yj
pi= The variance of the normalized
\/Z] 125 \/Z] 1 "J] estimator is substantially reduced
THEOREM 3.4. For large k, p converges to p, almost surely, with

i - 1\| D-k

1—-p?)? -2A]+0 ;
(1=77) I (kZ)}D—l

Var(pg) =(s — 1)A + {l (1-p?)* =24 +0 (i)} .

KDD 2023

Var(py) =(s —1)A + {%

k k2
where
N 2 u v
2 i i
A= (ujp] - 2 + o)) uf = =0 = ———.
o 2 2 56
=1 2ij=1 Uy 2ip=1Y;


https://pltrees.github.io/publication/KDD_2023_OPORP.pdf

The Normalized Estimator of VSRP

KDD 2023

Just like OPORP, the variance of the normalized estimator of VSRP is substantially reduced

THEOREM 3.5. Ask — o0, pysrp — p almost surely, with

Var(pusrp) =2 (1= p9)% + (s = 3)4) +0 (kiz)

where

D
2
A=Y (ujo] - p/2? +0)) "y

l'— .
i D 2 2
L \/thl \/Zt i% _
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A Slmulatlon Study of OPORP

KDD 2023

MSE = mean square errors

Blue = un-normalized
Red = normalized
Dashed = theoretical var

Normalization improves
accuracy especially in
high-similarity region.

Theory matches empirical

Original data vectors are
normalized so that inner
product and cosine

estimators are the same.

D= 1024, p= 095

Normalized

100 200 300 400 500

D = 1024, p = 0.5

Normallzed

100 200 300 400 500
k

107"
L
@ 102
=
1073 Normalized
107t : -
0 20 40 60
10°

D =128, p = 0.95

Normalized

D=128,p=0.5

20

40 60 53


https://pltrees.github.io/publication/KDD_2023_OPORP.pdf

The Inner Product Estimators
KDD 2023

If the original data are not normalized, we have at least two estimators for inner product:

D k
s A i=1%3Yj
A k A A 2 2 ) — Z_] | B
a= Yy s L0 Gy =" E us, g v F = 5
Z]_l 7Y \ = ) \ = 1 \/ijl :Ej \/Zj:l Y2

Improving Random Projections Using Marginal Information
We can also approximately use

the cubic equation for MLE
solution (based on dense

Gaussian random projection S) ! Department of Statistics, Stan.ford University, Stanford CA 94305, USA,
{pingli, hastie}@stat.stanford.edu
2 Microsoft Research, One Microsoft Way, Redmond WA 98052, USA,

COLT 2006 PingLi', Trevor J. Hastie!, and Kenneth W. Church?

k D D D k D k D D k
~3 ) s ol 2 B 2 92 2 N1 2 2 o
Q.. —id E TjY; + Qm | — E Uu; E v; + Uu; y; + v; T Lup ) v ) XY=
i=1 i=1 i=1 i=1 i=1 i=1 =1 i=1 i=1 =1 59
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Experiments for Estimating Inner Products

KDD 2023 : L :
Three estimators for estimating the inner product between a
pair of word vectors, using the “Word dataset” in EMNLP 2005
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The “Word” Dataset

https://qithub.com/pltrees/Smallest-K-Sketch

This dataset contains several thousand of word vectors. Each vector records the
number of word occurrences in 2216 = 65,536 documents. This dataset was
initially used in 2005 for estimating word associations using “smallest-K-sketch”
which was later developed into “Conditional Random Sampling” (CRS).

e Ping Li' PhD Thesis. Stable random projections and conditional random sampling, two sampling techniques for
modern massive datasets). Department of Statistics, Stanford University, 2007.

e Ping Li, Kenneth Church, Trevor Hastie. One Sketch For All: Theory and Application of Conditional Random
Sampling. NIPS 2008.

e Ping Li, Kenneth Church. A Sketch Algorithm for Estimating Two-Way and Multi-Way Associations. Computational
Linguistics 2007.

e Ping Li, Kenneth Church, Trevor Hastie. Conditional Random Sampling: A Sketch-based Sampling Technique for
Sparse Data. NIPS 2006.

e Ping Li, Kenneth Church. Using Sketches to Estimate Associations. EMNLP 2005. 61
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https://aclanthology.org/H05-1089.pdf

Retrieval Experlments for OPORP and VSRP

KDD 2023

Comparing three algorithms:

1 OPORP (un-normalized)
2 OPORP-norm
3 VSRP

Normalization substantially
improves the accuracy.

Without normalization, both
VSRP and OPORP have
very similar accuracy when
s=1 (parameter in VSRP).

VSRP performs poorly using
large s value (very sparse).
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Retrieval Experlments for OPORP and VSRP

KDD 2023

Comparing three algorithms:

1 OPORP-norm
2 VSRP (un-normalized)
3 VSRP-norm

Normalization substantially
improves the accuracy.

With normalization, both
VSRP and OPORP have
very similar accuracy when
s=1 (parameter in VSRP).

VSRP degrades when using
large s value (very sparse).
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KNN Classification for OPORP and VSRP

KDD 2023 00— 100
Comparing three algorithms: >, 907 > 907
1 OPORP (un-normalized) g g
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Summary of OPORP

KDD 2023
e Count-sketch with 1. fixed-length binning, and 2. normalization for the estimation.

e The fixed-length binning reduces the variance by (D-k)/(D-1), which is substantial for
relatively short embeddings. The fixed-length binning is also more convenient.

e The normalization step reduces the variance from (1+p”2) to (1-p*2)*2, which is drastic
especially in high-similarity region when p -> 1, e.g., duplicate detection.

e Aside result is that we also develop the normalized estimator and provide its variance, for
“very sparse random projections” (VSRP, KDD 2006).

e Directions for further developments:
o OPORRP + differential privacy (DP), e,g., arXiv 2023.
o OPORP + quantization, e.g., sign-full random projections (AAAI 2019).

o OPORP + big models, i.e., OPORP samples to replace or augment original features.
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Differential Privacy (DP) with OPORP

e Differential Privacy with Random Projections and Sign Random Projections. pdf

e Differentially Private One Permutation Hashing and Bin-wise Consistent Weighted Sampling. pdf
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Sign-Full Random Projections
AAAI 2019

Vector compressions via “sign-full random projections” is particularly natural for two-tower models.

Matching Score

The “query” tower MatChing FunCtiO%\ The “item” (e.g., ads)
embeddings are typically

Embedding tower embeddings are
generated on demand Representation Q O O Q O O typically stored and hence
when a query arrives. It / \

is hence natural to use , COMPression 1S often

o S E E ' needed to save space.
the “full” precision. Learning . %

Model

bt 'S0 O {0 O O]
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Sign-Full Random Projections
AAAI 2019

e The original theory of sign-full random projections focuses on the standard (dense) Gaussian
random projections, although in practice, we can allow sparse projections including OPORP.

e The theory is also built on top of a series of prior research on quantized random projections, by
Goemans, Williamson, Charikar, etc., as well as our own prior works on random projections.

e “Sign-Full” means the “query” vectors are not quantized (after random projections) while the “item”
vectors are quantized to be 1-bit (i.e., the sign after random projections). It is only a special
instance of a more general “asymmetric quantized random projections”; see NeurlPS 2019.
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Sign-Full Random Projections

AAAI 2019
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Sign-Full Random Projections
AAAI 2019
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The maximum likelihood estimator
E(pfm)=p+0 (l) (MLE) by solving a cubic equation and

the corresponding variance.
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Sign-Full Random Projections
AAAI 2019

Pr (sgn(z;) = sgn(y;)) = 1—+ cos™1 p,

Based on the well-known probability, one can use the “sign-sign” estimator:

1

“-

) 1
pp =cosm | 1— A sgn(z;)=sgn(y;)

1

<
I

. < ) 1% 1
E(p)=p+0 (Z) , Var(p) = T1+O (ﬁ)

Vi = cos™! P (7r — cos ™! p) (1-— pQ)
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Sign-Full Random Projections

AAAI 2019

The MLE estimator is the most
accurate. The ratios of the variances
show that the “sign-sign” estimator
(V1) can be substantially improved.

The accuracy of the “sign-full”
estimator (Vm) is substantially better
than the “sign-sign” (V1) estimator.

Ratios of variance factors:

Var Ratios

(&)

N

w

‘f’f,m ’ “J’f.mv ’

The difference
between blue (Vm)
and black (V1) is
the amount of
improvement we
can hope for with
“sign-full”.

. Because Vy,, is the theoretically

smallest variance factor, the ratios are always larger than 1, and we can use them to
compare estimators (lower the better). Note that V,,, is the variance factor for the MLE of

sign-full random projections (see Section 2).
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Sign-Full Random Projections
AAAI 2019

The “sign-full” samples (SiQN(.I'j), yj),j = 1,2, ..., 8

The MLE estimator for sign-full projections Sg'n,(;]jj)yj = ()

kO | —L—=sgn(z;)y;
( N—p? gn( J)JJ>

i—1 L san(x.)u.
) ( — sgn(frj)yj)

b

) 1 Vi - { (1= p2)7 ¢ (—”—sgn(:zrj)lh) e }
The variance of the E(pm)=p+0| - -

MLE estimator for k
sign-full projections . Vi 1
V(lr (p-’”‘) — i + () =
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Sign-Full Random Projections
AAAI 2019

The “sign-full” samples (SZ'QN(I'J'), yj),j = 1,2, ..., 8

Based on this probability result, . N =
we develop the basic “sign-full” E(Sgn (CIZ'] )y] ) o P

estimator and its variance.

Again, this estimator can be
improved by a normalization step.
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Sign-Full Random Projections
AAAI 2019

k
7T ijl sgn(x;)y;

ﬁg,n T a
. \/E\/Z§:1 yJQ
. 1
E(pgn) =p+0O (E)

- 1
Viar{pym) = VL + O (—)

The normalization step substantially
reduces the estimation variance.

Vo < Vg

k k=
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Sign-Full Random Projections

AAAI 2019

Two other “sign-full” estimators

R V2T K
ps =1 — 7 [Yj-1a,>0 + Yjt+1a,<0]
j=1
R . Vs
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Ve=2w
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Sign-Full Random Projections
AAAI 2019

Use the “sign-sign” estimator (V1) as
the baseline, to compare the four
estimators as well as the MLE (Vm),
for “sign-full” random projections.

The MLE (Vm) is the most accurate,
but MLE is computationally
expensive and is not in a metric
(inner product) form.

i 0.5 0 0.5 1

Overall, Ps.n is avery good _ _ Vo Vi Vi
’ Y9 Variance factor ratios: Yz, Jg Zon Vs )

estimator, for non-negative data Ve e 14 ° g V%
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Sign-Full Random Projections
AAAI 2019

Retrieval experiments on RCV1 dataset to compare the “sign-sign” estimator )01 with two
“sign-full” estimators: ps,n ,  Pg,n forretrieving similar items exceeding a pre-specified
threshold 0. Ps.n shows the best accuracy. 71 outperforms ﬁg’n at very high similarity.

The experiments match the theory very well.
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Other Methods for Compressions

Stochastic quantizations for data vectors and model weights, e.g., SIGMOD 2021.

Many quantization schemes for Gaussian projections, e.g., ICML 2014, NIPS 2016, NIPS 2017.
Sign Cauchy random projections, e.g., NIPS 2013.

Sign Stable random projections, e.g., arXiv 2015.

Sign random Fourier features, e.g., NeurlPS 2022.

General quantization methods for random Fourier features, e.g., AISTATS 2021, ICML 2021.

Minwise hashing, consistent weighted sampling, and related methods will be covered later.
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Vector similarity functions

Vector compressions

Vector similarity search

Maximum inner product search (MIPS)
Fast neural ranking

GPU computing

GCWSNet, hashing algorithms
Boosted trees, ABC-boost

Distributed, adaptive, and federated learning
Privacy

Security

Others: generative Al models, NLP, knowledge graphs, multi-modal, cross-modal, advertisingg



Embedding Based Retrieval (EBR)

A typical scenario: given an input image, find a few similar |mages in the database of
billions of images

A scenario of commercial value: query — ads (advertisement) matching
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http://research.baidu.com/Public/uploads/5d12eca098d40.pdf

Embedding Based Retrieval (EBR)

KDD 2019 Traditional pipeline: ads candidates generated

MOBIUS: Towards the Next Generation of Query-Ad Matching
in Baidu’s Sponsored Search

!Miao Fan, ¥Jiacheng Guo, 2Shuai Zhu, 2Shuo Miao, !Mingming Sun, !Ping Li
{fanmiao,guojiacheng,zhushuai,miaoshuo,sunmingming01,liping11}@baidu.com
! Cognitive Computing Lab (CCL), Baidu Research, Baidu Inc.
2 Baidu Search Ads (Phoenix Nest), Baidu Inc.

using different metrics from final CTR model

Billions of Ad Candidates

Figure 1: “Mobius” is the internal code name of this project. Coincidentally, the well-known “Mobius Loop” is also the bird’s-
eye view of Baidu’s Technology Park in Beijing, China.

After query embeddings and ads embeddings are generated, ANN
(approximate near neighbor) search is the key technology, because each

input query might correspond to millions or more potential ads candidates.

H ds of Ad Candidates

New pipeline: candidates generated by
considering business metrics (CTR)

Multi-Objectives (Mobius):

Billions of Ad Candidates
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Mobius: Combining Recall with CTR Models

The classical two-tower model is used for training query and ads embeddings (by
optimizing the cosine similarity). At the query time, each query embedding needs to be
compared with millions or more ads embeddings. Thus, approximate near neighbor (ANN)

search has become a standard component of EBR.

Pr(click) Pr(unclick) Pr(bad)

r -So;tr-n;x-L-a_\_fer - ‘, i‘ CTR Prediction

Data Sampler

Neural Click Model (S W‘m’) |>4>< D@q L'setf,.uery; Ady Priclick) = 0.33

4> Phasc of Data
‘ Augmentation

1+ Phase of Training
CTR Modcl

PP, CE R U ey D

User Query DNN Ad DNN {
| ‘
Relevance < threshold

Relevance jw@er (’1" eacﬁer) [ ; ] ey

fi Augmented Buffer

Data ﬂugmenter [ User query, ® Ad, ) t:;: : L“::;?(,ou

1 ‘ y)

KDD 201 9 User query; Ad, Clicked (1) ’
User query, Ad, Unclicked (0)

Click History (Log)

Business-related “weights” (e.g., bid
price) can be considered at query time.
ANN => approximate maximum inner
product search (MIPS).

We can replace this simple click/cosine
model with another deep neural net.

=> neural ranking 83
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EBR: better technology => increased revenues

Extremely useful for search, feed and advertising

Table 3: The improvements on CPM, CTR, and ACP of
Mobius-V1 compared with the previous system deployed on
different websites/apps. The results are based on our 7-day
surveillance of the entire online traffic.

MOBIUS: Towards the Next Generation of Query-Ad

. . . L hed Platf CPM CTR ACP
Matching in Baidu's Sponsored Search, KDD 2019 aapetec Ao :

Baidu App on Mobiles +3.8% +0.7% +2.9%

Baidu Search on PCs +3.5% +1.0% +2.2%

Affiliated Websites/Apps | +0.8% +0.5% +0.2%

CPM can be viewed as revenues.
CTR and CVR are directly related to revenues

We demonstrate the effects of launching EGM in Baidu video adver-
tising platform. We show its influence on click-through rate (CTR)
and conversion ratio (CVR) defined as follows:

CTR = # of clicks CVR = # of conversions -
. - - " # of impressions’ " # of impressions
EGM: Enhanced Graph-based Model for L arge-scale p p (20)
Video Advertisement Search. KDD 2022 There two metrics directly measure the effectiveness of the adver-

tising. The experiments are conducted on an observation window
with a length of a week. Before launching EGM, our video advertis-
ing platform is based on TDM. After launching EGM, CTR relatively
increases by 1.33% and CVR relatively increases by 1.07%. 84
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Approximate Near Neighbor (ANN) Search

ANN is an ancient topic in CS, possible starting in the 1970s; see Prof. Friedman’s works:

Jerome H. Friedman, F. Baskett, and L. Shustek. An algorithm for finding nearest neighbors. I[EEE
Transactions on Computers, 24:1000-1006, 1975.

Jerome H. Friedman, J. Bentley, and R. Finkel. An algorithm for finding best matches in logarithmic
expected time. ACM Transactions on Mathematical Software, 3:209-226, 1977.

https://www.linkedin.com/feed/update/urn:li:activity:69650264
31579951104/ the talk at Google on 8/15/22 also discussed
Prof. Friedman’s contributions on boosting and trees.
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Graph-Based ANN

Graph-based ANN algorithms (such as HNSW) have become very popular, especially in EBR
applications. We will introduce HNSW based on our implementations and the GPU version.

Unlike other ANN algorithms such as hashing methods, the GPU version of HNSW is not trivial.

SONG: Approximate Nearest Neighbor Search on GPU

Weijie Zhao, Shulong Tan and Ping Li
ICDE 2020 Cognitive Computing Lab
- Baidu Research USA
1195 Bordeaux Dr. Sunnyvale, CA 94089
10900 NE 8th St. Bellevue, WA 98004
{weijiezhao,shulongtan,liping11} @baidu.com
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ICDE 2020 Graph-Based ANN

Algorithm 1 Searching algorithm on the proximity graph.

Input: Graph index G(V, E); a query point p;

Number of output candidates K

Output: Top K candidates for each query topk

1.

_ = e
W= o

14.
15;
. end while

. return topk

16
17

Wi log: 2 Oy A R LY B

Initialize a binary min-heap as priority queue g and a hash
set visited with the default starting point. Construct an
empty binary max-heap as priority queue topk
while g # () do
(now_dist,now_idx) < q.pop_min()
if ropk.size=K and ropk.peek_max()<now_dist then
break
else
topk.push_heap((now_dist,now_idx))
end if
for each (now_idx,v) € FE do
if visited.exist(v) # true then
d « dist(p,v)
visited.insert(v)
q.push_heap((d,v))
end if
end for

Initialization q: 1
topk: %)
visited: 1

Iteration 1 qg: 2745
topk: 1
visited: 12457

Iteration 2 q: 87345
topk: 1 2
visited: 1234578

Iteration 3 q: 73451413
topk: 128
visited: 123457 813 14

Iteration 4 q: 34561413
topk: 728
visited: 123456781314

Fig. 1: An example to illustrate the searching algorithm on the
proximity graph (Algorithm 1). The star represents the query
point p. In this example, we target to find the top K = 3
nearest neighbors of p. Vertex 1 is the default starting point.
The searching path 1 — 2 — 8 — 7 is highlighted by the
dashed arrows. The right part shows the states of two priority
queues—q and fopk—and the hash table visited in each iteratiort’
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ICDE 2020

GPU Architecture

Streaming Multiprocessor (SM)

Core

Core

Core

Core

Register file

Dispatch unit

Warp scheduler

LO instruction cache

L1 cache/shared memory

Streaming Multiprocessor (SM)

Core

Core | ... ...

Core

Core

Register file

Dispatch unit

Warp scheduler

LO instruction cache

L1 cache/shared memory

L2 cache

Global memory

GPU for HNSW is not trivial. Need to understand architecture well for efficient implementation.
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Queries Per Second

ICDE 2020

ANN Performance Evaluations
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Queries Per Second
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ICDE 2020

ANN Performance Evaluations
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Challenges with Graph-Based ANN

e Building graph indexing can be expensive. Updating graph indexing is also expensive.

e GPU implementation is not trivial (although we have done that).

e ANN + business filter is an urgent demand from industry.

e The search time is often dominated by the similarity computing time on the fly.

e Maximum inner product search (MIPS) with graph-based ANN.

e Storing original embedding vectors can be too expensive, especially for the memory.

e (GPU) Fast neural ranking

Since 2017, we have been working on graph-based ANN algorithms and have
developed many solutions to address the above challenges.
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ANN + Business Filters

Constrained Approximate Similarity Search on Proximity Graph (first paper on this topic)
e Retrieving vectors satisfied the filter without reconstructing graph index
e More than 100X faster than FAISS (PQ) and HNSW (Vanilla) for most recall levels
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ANN + Business Filters

Constrained Approximate Similarity Search on Proximity Graph (first paper on this topic)
e Retrieving vectors satisfied the filter without reconstructing graph index
e More than 100X faster than FAISS (PQ) and HNSW (Vanilla) for most recall levels

Vanilla similarity search AIRSHIP-Start AIRSHIP-Alter AIRSHIP-Alter-Prefer

Search
area
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ANN + Business Filters

Constrained Approximate Similarity Search on Proximity Graph (first paper on this topic)
e Retrieving vectors satisfied the filter without reconstructing graph index
e More than 100X faster than FAISS (PQ) and HNSW (Vanilla) for most recall levels
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ANN + Business Filters: Example Use Cases

Marketing
o Constraints on the customer's preferences, purchase history, or the specific item they
are currently viewing

Fraud detection
o Include patterns or thresholds for suspicious behavior, such as unusual transaction
amounts, frequencies, or locations

Talent Acquisition
o Narrow down the pool to candidates/jobs with a particular skill set, a certain level of
experience, or specific qualifications

Healthcare
o Filter on patient demographics, medical conditions, or treatment history

Applications in Ads: ad publisher targets on given locations and/or companies
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Updating Graph Indexes

Proximity Graph Maintenance for Fast Online Nearest Neighbor S

earch

e Adding/deleting data vectors without reconstructing graph

index

e Our techniques are highly efficient with very little loss on accuracy
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Techniques for Sparse Vectors

Natural vectors (e.g., from text n-gram data) are often  0.45

sparse. Embedding vectors can be dense or sparse. By 003-2'

0.3
' 0.257
a 027
HNSW for sparse vectors is a less explored area. We 7] 0.15|
have developed a series of new techniques to improve 0.1}

the efficiency of HNSW on sparse data. 0.05¢

using our latest “Chi-square two-tower model”, we obtain
highly sparse embeddings vectors.

|ty

par

-Chl -square| |
Il cosine

0
64 128 256 512 1024 2048

In particular, HNSW + hashing is proven effective, for
example, HNSW + sign cauchy random projections.

Since 2005, we have developed a wide range of hashing
algorithms suitable for sparse data including b-bit
minwise hashing, one permutation hashing, circular
hashing, consistent weighted sampling (CWS), etc.

Embedding Dim (d

In an industry application,
the sparsity (fraction of
non-zeros) of embedding
can be as low as 2%.
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Vector Compression and Hashing

Webspam is high-dimensional, sparse, with ~4000 non-zeros per vector. With compression
techniques (here we used “sign cauchy random projections” in NIPS’13), we can reduce each
vector to k = 256 (or k = 2048) bits per vector, corresponding to 500-folder (or 62-fold) reduction
in space. The overall similarity computational time for HNSW is reduced to 5-fold (or 13-fold).

25
20 Webspam Hashing: Top-1
e HNSW experiments  with
§ 15t compression, as reported in
GE) 10 \_/ Practice with Graph-based ANN
= k=512 Algorithms on Sparse Data:
5 e ] Chi-square _Two-tower model,
o 230 HNSW. Sign Cauchy Projections.
0

0.8 0.85 0.9 0.95 1
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Hashing-based ANN

Example: each vector => 4-bit code => a hash table of 2*4 = 16 buckets.

All vectors are stored in the buckets according to the hash code.

When a new vector arrives, we generate its 4-bit hash code and retrieve the vectors in the
corresponding bucket. This way, we can avoid exhaustive search of all data points.

Only using one hash table may not perform well. Large table => too many buckets => tew
retrieved points. A common strategy is to build multiple tables and use the union results.

Index Data Points Index Data Points
00:00 . 8, 13, 251 00: 00 .2 19, 83
00:01 '5, 14, 19,29 00: 01 117, 36, 129
00:10 ! (empty) 00:10 .4, 34, 52, 796
11:01 :7,24, 156 11:01 .7 198
1110 33, 174, 3153 11:10 !56, 989
11:11 61,342 11:11 18,9 156, 879
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In Defense of MinHash Over SimHash, AISTATS 2014

Fraction retrieved versus recall plots: standard way to
evaluate ANN algorithms

Exhaustive search = 100% fraction retrieved

Recall = percentage of ground truths in search results

SimHash: In order to achieve a recall at 90% (0.9), we need to search for 5% of the
data points. 5% means a 20-fold reduction in cost, pretty good.

MinHash: In order to achieve a recall at 90% (0.9), we need to search for 0.5% of
the data points. 0.5% is ten times better than 5%.


http://proceedings.mlr.press/v33/shrivastava14.pdf
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In Defense of MinHash Over SimHash, AISTATS 2014
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Maximum Inner Product Search (MIPS) for Ads

. xTyxw [ x|\ [yxw
cos(x,y) X w = il ( ) (J

Lyl Vil lyll

]

X: user query embedding vector

y: ads embedding vector

w: weights from business considerations such as bid price
The task is transformed from maximum cosine search to maximum inner product search.

Technical challenge: measures like cosine satisfy triangle inequality but inner products do not.
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Our works on MIPS

KDD’21, Norm Adjusted Proximity Graph for Fast Inner Product Retrieval

EMNLP’19, On Efficient Retrieval of Top Similarity Vectors

NeurlPS’19, Mobius Transformation for Fast Inner Product Search on Graph

WWW’15, Asymmetric Minwise Hashing for Indexing Binary Inner Products and Set Containment

UAI'15, Improved Asymmetric Locality Sensitive Hashing (ALSH) for Maximum Inner Product Search (MIPS)

NIPS’14, Asymmetric LSH (ALSH) for Sublinear Time Maximum Inner Product Search (MIPS)
(The Best Paper Award in NIPS’14)
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Business Motivation for MIPS

KDD’19, MOBIUS: Towards the Next Generation of Query-Ad Matching in Baidu’s Sponsored Search

Search Results

By adding weights (e.g., bid price) to vectors, the search problem becomes —
MIPS, which is widely used in (e.g.,) advertising. The figures and tables are from (.. i by Brw
Baidu’s published work in KDD’19, for the new CTR retrieval/training system. 1r MIPS
ANN Search ﬂ
Pr(click) Pr(unclick) Pr(bad) s ﬂ
sse ot Dats _ I . _I_ __ I _ . Vector Compression
‘ i&gmerftz?non If- _ngin_lax_LEyfr ‘I CTR G"recﬁctwn ﬂ ﬂ
Phase of Training |
CTR Modd User Vector Ad Vector
[ I ] Data Sampler
Neural Click Model (Student) [ I ] Uw_‘_‘_“m Ad e o3 Figure 7: The fast ad retrieval framework. The two types of
____________________ vectors will be compressed first to save the memory space.
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http://research.baidu.com/Public/uploads/5d12eca098d40.pdf

Mobius Transformation for Fast MIPS on Graph

Mobius Transformation for Fast Inner Product Search on Graph, NeurlPS 2019

Outline

General setting.

Search on graph.

Voronoi Cell and Delaunay graph.

Search on Delaunay graph.

(?-Delaunay graph and IP-Delaunay graph.
Mobius transformation and graph isomorphism.
Proposed algorithm.

Experimental results.
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Mobius Transformation for Fast MIPS on Graph

NeurlPS 2019

General Setting

X ¥ c
Dataset S = {xy,...,x,} C X.

Real valued function f : X x Y — R.

Aim to solve the optimization problem:

argmaxf(x;,q) for ge€Y.
X,'GS

Allow prepossessing on dataset S.

Most interesting examples:

f(Xﬁy):—“X—yH and f(xﬁy):XTy_ 107
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Mobius Transformation for Fast MIPS on Graph

NeurlPS 2019

Search on graph

Let f(x,y) = —||x —y]||.
arg max,.cs f(x;, g) aims to find the nearest point of g in S.

Search on graph strategy

1. Build a proximity graph G on S by connecting certain points,
e.g., k-NN graph.

2. Randomly select a vertex x from the graph.

3. Evaluate the /2-distance ||[x — g|| and ||y — q||, where y's are neighbors
of x on the graph G.

4. If x" is closer to g than x, then replace x by y and repeat step 3.

5. Stop if x is closer to g than x's neighbors on graph.

This procedure finds the exact solution if and only if G contains

Delaunay graph as a subgraph. 108
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Mobius Transformation for Fast MIPS on Graph

NeurlPS 2019

Voronoi Cells and Delaunay Graph
Goal: to find arg max,.cs f(x;. q).
Voronoi cells: solution area of the problem.

Delaunay graph: the dual graph of Voronoi diagram.

-1 0 1

(2-Delaunay graph IP-Delaunay graph

Every /2-Voronoi cell is nonempty, but IP-Voronoi cell can be empty. 109
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Mobius Transformation for Fast MIPS on Graph

NeurlPS 2019

Sufficiency and Necessity Delaunay Graph

Theorem
For given f, suppose its Voronoi cells w.r.t. any dataset are connected,
then
e for q € Y, performing greedy search on Delaunay graph returns the
solution of arg maxy.cs f(xj, q);
@ conversely, for any G’ does not contain Delaunay graph as a

subgraph, there exists a query q € Y such that greedy search on G’
does not always retrieve the exact solution.

@ Any (P-norm and inner product satisfy the assumption on f.

@ Delaunay graph is the smallest graph such that greedy search always

return exact solution.
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Mobius Transformation for Fast MIPS on Graph

NeurlPS 2019

Empty Half Space Criterion

» The line AB in divides the plane into two open half-spaces. One of
the half-space does not contain any data points, so A and B are

connected in IP-Delaunay graph.

057

05|
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Mobius Transformation for Fast MIPS on Graph

NeurlPS 2019

Empty Sphere Criterion

The circumcircle of 0, A and B does not contain any data points
inside, so there is a simplex with vertices 0, A’ and B’ in the

(?-Delaunay graph.

2
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Mobius Transformation for Fast MIPS on Graph

NeurlPS 2019

Mobius Transformation

Mobius transformation y —
Maps hyperplanes to spheres.
Maps lines to circles in R?.

Let y; = x;/||xi||%.

2
1
0.5 1 T
0 0 oo . B
> 1} v
_1 t
. 2 :
1 05 0 2 4 0 1 2

113


https://proceedings.neurips.cc/paper/2019/file/0fd7e4f42a8b4b4ef33394d35212b13e-Paper.pdf

Mobius Transformation for Fast MIPS on Graph

NeurlPS 2019

Graph Isomorphism Theorem

The following two graphs are isomorphic:
(a) IP-Delaunay graph before transformation (blue graph on the left);

(b) The neighborhood of 0 (in the graph sense) of (>-Delaunay graph
after transformation (red graph on the right).

1
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Mobius Transformation for Fast MIPS on Graph

NeurlPS 2019

Proposed algorithm

1. Let S:= {y; = x;/||xi||? | xi € S} U {0} be the transformed dataset.
2. Construct approximate ¢?>-Delaunay graph, e.g., HNSW, w.r.t. S.

3. Replace the vertices y; by original data vectors x;.
4

. Start from 0, perform greedy inner product search on the graph.
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Mobius Transformation for Fast MIPS on Graph

Experiments
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Mobius Transformation for Fast MIPS on Graph

NeurlPS 2019
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Fast Neural Ranking: Better Accuracy

D
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Key Components in Fast Neural Ranking

Replace cosine with a neural net and train the embeddings together with the neural net.
Store embeddings just like in two-tower models (saving time using space).

When a query arrives, generate (or retrieve) its embedding, and evaluate the neural net for
every item embedding to find the best item with the maximum score. However, this would be
extremely slow by evaluating all item embeddings for every query. This is the same
motivation for vector ANN. The challenge however would be substantially more difficult.

We have developed a series of fast neural ranking techniques which achieve high accuracy
by only evaluating much less than 1% of the neural nets.

In industry practice, to further boost the serving efficiency, it is often desirable to use GPUs
for fast neural ranking. Hence this technique is also known as “GPU fast neural ranking”.
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Our Works on (GPU) Fast Neural Ranking

WSDM’20, Fast Item Ranking under Neural Network based Measures
(The proposed SL2G algorithm is the simplest algorithm and easy to use in practice)

VLDB'22, Fast Neural Ranking on Bipartite Graph Indices

KDD'22, EGM: Enhanced Graph-based Model for Large-scale Video Advertisement Search

SIGIR'23, Asymmetric Hashing for Fast Ranking via Neural Network Measures
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SL2G and Optimal Binary Function Search (OBFS)

Fast Iltem Ranking under Neural Network based Measures, \WSDM 2020

DEFINITION 1. (OBFS) Let X and Y be subsets of Euclidean spaces
(possibly with different dimensions), given adata setS = {x1,...,xp} C
X and a continuous binary functional, f : X XY — R, givenq € Y,
OBFS aims to find

arg max f(x; q). (1)

e No strong assumptions for ranking measures, linear or nonlinear, convex or

non-convex
e Traditional ANN Search and MIPS are special cases of OBFS
e Specifically, we focus on neural network based binary functional f
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Neural ranking: Search on L2 Graph (SL2G)

Fast Item Ranking under Neural Network based Measures, WSDM 2020

To bypass constructing Delaunay graphs with respect to complicated binary functions, SL2G has
two steps:

1. No matter what the given binary function fis, SL2G constructs a Delaunay graph (or an
approximate one) with respect to 12 distance (which is defined on searching data X and
independent of queries) in the indexing step.

2. Inthe searching step, SL2G performs the greedy search on this index graph by the binary
function f.
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BEGIN: Fast Neural Ranking by Bipartite Graph

Fast Neural Ranking on Bipartite Graph Indices, VLDB 2022

Jxi 9) £,
(¢ Y | - y / \

o Query (User) % / \
% ..... — £ Base Data (Movies) A

(a) Binary Function Search (b) SL2G (c) BEGIN

Figure 1: An example of the OBFS problem and solutions: we have collections of users and movies,
and a binary function f(x;, q) learned on historical user-movie preference pairs. Given a user ¢ and
a movie x;, the binary function f(x;, q) predicts the ranking score of this pair—how the user may
like the movie. (a) Challenges in adapting ANN algorithms to the fast OBFS problem. The binary
function is defined on movie-user pairs—no user-user nor movie-movie distance/similarity is defined.
However, traditional ANN methods, e.g., proximity graph, require the distance between base data
vectors to construct an index. (b) SL2G exploits /2-graph to approximate the binary function search
space. (c) Our proposed solution—-BEGIN-builds a bipartite graph that leverages users to bridge
relations among movies. This allows us to apply graph-based search algorithms on fast OBFS without
knowing the distance between users f(g;, g;) or the relationship between movies f(z;, ;). 124
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BEGIN Construction

Algorithm 1 BEGIN Construction

1:

11:
12:
13:
14:

15:
16:
17:
18:
19:
20:
21;
22:
23:

input: Base vector set S, sample query vector set (), the maximum vertex degree M, for base data, the
maximum vertex degree M, for queries, the priority queue size k for searching neighbors and the similarity
measure f(z,q).

Initialize graph G = ()

S

._.
32900 =1 £h

for each x in S do
Greedy base data search k vertices {p; } on G by|SearchB(z, G, k, f) that have largest values with
in f(z, p;), place them in descending order.
C+«+0.H<«+ 0.
fori< 1tokdo
if p; not in H then
C + CU{pi}
Add all neighbors’ neighbors of p; to H.
add edge {x,pi} to G
if |C| = M. then
break

for each g 1in () do
Greedy Query search k vertices {p; } on G by|SearchQ(q, G, k, f)|that have largest values with ¢ in
f(pi, q), place them in descending order.
C+ 0.H<+0.
fori< 1tokdo
if p; not in H then
C + CU{pi}
Add all neighbors’ neighbors of p; to H.
add edge {pi,q} to G
if |C| = M, then
break

output: index graph ¢

VLDB 2022
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Fast Neural Ranking on Bipartite Graph Indices, VLDB 2022

Results for Neural Network Measures
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Figure 7: Experimental results for the neural network mea-
sures from the view of Recall vs. Time. The best results are

in the upper right corner.
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results are in the lower right corner.
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GPU Computing

GPU for HNSW
GPU fast neural ranking
GPU hierarchical parameter server for training massive-scale CTR models

GPU for feature processing
GPU for hashing

o & b =

List of our relevant works on GPUs:

WWW’12, GPU-Based Minwise Hashing

CIKM’19, AlBox: CTR Prediction Model Training on a Single Node

MLSys’20, Distributed Hierarchical GPU Parameter Server for Massive Scale Deep Learning Ads Systems
ICDE’20, SONG: Approximate Nearest Neighbor Search on GPU

BIGDATA'22, Communication-Efficient TeraByte-Scale Model Training Framework for Online Advertising
BIGDATA'22, FeatureBox: Feature Engineering on GPUs for Massive-Scale Ads Systems
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https://pltrees.github.io/publication/FeatureBox2022.pdf

GPU for HNSW

ICDE 2020, SONG: Approximate Nearest Neighbor Search on GPU
e SONG (our GPU version of HNSW) can be close to 100 times faster than CPU HNSW
e SONG can be an order of magnitude faster than FAISS-IVFPQ (GPU)
e GPU HNSW saves the CPU-GPU data movement overhead when calling LLM
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https://cs.rit.edu/~wjz/papers/conference/2020-icde-song.pdf

GPU for Minwise Hashing

GPU-Based Minwise Hashing, WWW 2012

b-Bit Minwise Hashing in Practice, Internetware 2013

10 : : 10*
GPEU hame! UGPIJ Kernel ?
23101 . PR W— 23102..”m"m“muﬂ_"muwum“m%m“m_m”m“_
a | 3 3, CPU ——> GPU
= ( CP:U__>GPUi < ———o—o—e—o—o——0
E 100 I e IR o SR o) E 100 c_.. M. 0w SN - S
g — O GPU -=> €U
_1| Spam: GPU Profiling _o| Revi: GPU Profiling |
10 = 3 ") 5 10 3 3 5
10 10 : 1D 10 10 10 10 10
Batch size Batch size

Figure 1: Overhead of three phases of GPU implementation.

Table 2: Data loading and preprocessing (£ = 500) time (sec)
Dataset Loading Permu 2U 4U

2U (GPU)
Webspam 9.7 x 10 6.1 x 10° 4.1 x 10° 4.4 x 10 51

Revl 1.0 x 10* = %40 . ID*

- 1.4 3107

GPU achieves 100-fold improvements. Example of “embarrassingly parallelizable”. ~ ™°


https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/p565.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/a13-li.pdf

GPU for (Ads) CTR Model Training

1. (Ads) CTR models are still the major revenue source for Al. CTR = click-through rate
2. CTR models can easily have trillion (1000 billion) parameters, even in 2014.
3. Starting in 2018, training CTR models on GPUs became a reality, through innovations.

4. The key is to carefully design a GPU-CPU-Disk (SSD) hierarchical engine.

Hierarchical GPU parameter server for training massive CTR models. A major breakthrough
in industry. The initial version called “AlBox” was mentioned in NVIDIA Jensen Huang’s talk in
2019. See media report and publications in CIKM'19 (single GPU-box), MLSys'20 (multi
GPU-box), BIGDATA'22 (GPU feature processing), BIGDATA'22 (GPU adaptive training), etc.
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GPU for (Ads) CTR Model Training

CIKM 2019

AlBox: CTR Prediction Model Training on a Single Node

Weijie Zhao!, Jingyuan Zhang?!, Deping Xie?, Yulei Qian?, Ronglai Jia%, Ping Li!
ICognitive Computing Lab, Baidu Research USA
2Baidu Search Ads (Phoenix Nest), Baidu Inc.
1195 Bordeaux Dr, Sunnyvale, CA 94089, USA
No.10 Xibeiwang East Road, Beijing, 10085, China
10900 NE 8th St. Bellevue, WA 98004, USA
{weijiezhao,zhangjingyuan03,xiedeping01,qianyulei,jiaronglai,liping 1 1}@baidu.com

CIKM 2019: Mixed CPU-GPU training.

Massive 10TB-parameter layer trained on
CPUs. Offloaded to SSDs.
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GPU for (Ads) CTR Model Training

MLSys'20

Sparse input

DISTRIBUTED HIERARCHICAL GPU PARAMETER SERVER FOR

Sparse
MASSIVE SCALE DEEP LEARNING ADS SYSTEMS
parameters g .
(-10TB) Embedding
> layer
Weijie Zhao!, Deping Xie?, Ronglai Jia2, Yulei Qian?, Ruiquan Ding?, Mingming Sun', Ping Li!
! Cognitive Computing Lab, Baidu Research
2 Baidu Search Ads (Phoenix Nest), Baidu Inc.
3 Sys. & Basic Infra., Baidu Inc. Derize
{weijiezhao, xiedeping01, jiaronglai, qianyulei, dingruiquan, sunmingming01, liping11} @baidu.com : : 2
parameters< Fully-connected
(< 1GB) layers
Train the massive layer also on GPUs \

Output
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GPU for (Ads) CTR Model Training
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GPU for (Ads) CTR Model Training

B MPI-cluster [JHPS-4

MLSys 20 2.0E+5

1.5E+5

1.0E+5

MPI-100 | MPI-80

5.0E+4 MPI-150
MPI-75

MPI-128

#Examples trained/sec

0.0E+0
A (300GB) B (600GB) C (2TB) D (6TB) E (10TB)

Models

GPU (HPS 4 boxes) solution can be 2-4 times more
efficient compared to CPU (MPI) cluster solution 135
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GPU for Feature Engineering

BIGDATA 2022

FeatureBox: Feature Engineering on GPUs
for Massive-Scale Ads Systems

Weijie Zhao, Xuewu Jiao, Xinsheng Luo, Jingxue Li, Belhal Karimi, Ping Li

Cognitive Computing Lab, Baidu Research
Baidu Search Ads (Phoenix Nest), Baidu Inc.
10900 NE 8th St. Bellevue, Washington 98004, USA
No. 10 Xibeiwang East Road, Beijing 100193, China

{weijiezhao, jiaoxuewu, luoxinsheng, lijingxue01, belhalkarimi, lipingl1} @baidu.com

Raw Data 50 TB

Original

FeatureBox

Feature Extraction
MapReduce

Intermediate I/O 200 TB

Distributed
Training on GPUs

Extracted Features 15 TB

I/0O Overhead

HDEFS

Feature Extraction

4

Training

GPU Servers

Reduce excessive I/O between HDFS and computing nodes
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GPU for Feature Engineering

BIGDATA 2022
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Fig. 6. Feature extraction time of MapReduce and FeatureBox. 137
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GPU Ads CTR Models with Local Training

Communication-Efficient TeraByte-Scale Model Training
Framework for Online Advertising

Weijie Zhao!, Xuewu Jiao?, Mingqing Hu?, Xiaoyun Li', Xiangyu Zhang?, Ping Li'
! Cognitive Computing Lab, Baidu Research
2 Baidu Search Ads (Phoenix Nest), Baidu Inc.
10900 NE 8th St. Bellevue, Washington 98004, USA
No. 10 Xibeiwaneg East Road. Beiiing 100193. China

Algorithm 2 k-step Adam (with N workers)

1: Input: learning rate «, 81, 5o

2: Initialize: local models xg;, moment estimators mo; = 0,vp; =€l,i =1,..., N
3: fort=1,...,T do

4:  Compute stochastic gradient g;; < V fi(z¢i) + &

5 mui = imu—1,i+ (1 — B1)gei

6: i = Bavr—14 + (1 — B2)gi;

7. if t mod k # 0 then

8: Vp = Vg1

9

T4 < Tpg — OA%
10: //Local Adam Update
11:  else
12: v =% Zf\;l Vg
13: Tt+1,i % JNzl (It,j — a:’}tu—f)
14: //Global averaging
15:  end if
16: end for
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BIGDATA 2022

K-step local adam updates
reduces the training time.
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The Role of Vector DBs in Search and Ads

Embeddings have become the crucial component in search and ads.
Embedding-based retrieval (EBR) is the key step for retrieval.

EBR, ANN, Vector DBs, etc only provide very crude results and hence they typically serve as
an important intermediate step in the pipeline of ads, search, and recommendation.

Al models for generating embeddings and models for prediction/rankings are crucial. We will
focus on big Al models (as well as privacy) for the rest of the presentation.

'a item/user info . embeddmgsﬂ traln ti ' predict ﬂ

Business Vector DB Recommendation Ranking Results

regulation
compliance 139

Privacy



A Simple Demo

e Amazon movie review: LLM + embedding + Al models :

11,000 movie reviews (raw texts) => LLM => 11,000 embeddings in 384 dimensions.
1,000 embeddings as test (query) vectors , 10,000 base vectors.

HNSW and KNN classifiers to predict review ratings (1-5) => 60% accuracy.
ABC-Boost trees with 10,000 base vectors for training = > 70% accuracy.

MLP neural networks => 70% accuracy.

MLP neural networks + DCNV2 (deep feature crossing) => 71%.

MLP neural networks + BFI (8-block blockwise feature interactions) => 71%.

O O O 0o O O O

Only using embeddings and their similarities is typically not sufficient. Many applications
will need to build Al models on top of the embeddings from LLM or other methods.
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BFI: Blockwise Feature Interaction
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Blockwise Feature Interaction

Arxiv 2023: Blockwise Feature Interaction in Recommendation Systems

DCNv2 uses D2 parameters
for each cross layer

Blockwise Feature Interaction
(BFI) shuffles the features and
partition them into blocks to
compute feature interactions
in a smaller scale

The output of each block are
merged and reshuffled.

The feature interaction across
multiple blocks is addressed
through multiple cross layers
with this reshuffle
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: Blockwise Feature Interaction

We implemented 4 variants
of BFI: P, Q, T, S.

P does the most work and
usually performs the best.

P6 means that we divide
the features into 6 parts.
The computation cost is
reduced by a factor 6, and
the # of parameters is also
reduced by a factor 6.

T6 further reduces the
number of parameters by a
factor of 36.
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Lightweight and High-Accuracy Deep Learning

0.957
0.9
>
o
E ”~ r A - ansN =
8085 y g™ - - -Original |
< e —k =64
08l —k =128
/ Covtype —k = 256
' b=8,L=2H=100 ——K=512

1 20 40 60 80 100
# Epoch

GCWSNet

Dashed curve: test accuracy with a 2-hidden-layer neural
net on the original data. The best accuracy is about 0.86.

k = 64 solid curve: using CWS hashing as features, the
accuracy can be improved to 0.9 with faster convergence.

Using more (larger k) hashes improves the accuracy.
Training with CWS hashing converges much faster too.

CIKM’22: GCWSNet: generalized Consistent Weighted Sampling for Scalable and Accurate Training of Neural Networks
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GCWSNet

Algorithm 1 Generalized consistent weighted sampling (GCWS) for hashing the pGMM kernel.
Input: Data vector u; (i =1 to D)

CIKM 2022

Generate vector @ in 2D-dim by (1).

For ¢ from 1 to 2D
ri ~ Gamma(2,1), ¢; ~ Gamma(2,1), B; ~ Uniform(0, 1)
ti < plﬁil = [31'J, a; < lOg(Cz') —ri(ti+1— [31')

End For

Output: i* « argmin; a;, t* — t;-

Given another data vector v, we feed it to GCWS using the same set of random numbers: r;, ¢;, 3;. To
differentiate the hash samples, we name them, respectively, (i},t}) and (i}, t}). We first present the basic
probability result as the following theorem.

Theorem 1.

PI(i5,63) = (i3 £3)] = pGMM(u, ). (5)

u
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GCWSNet

CIKM 2022
% 2% i 2D . or e
U2i—1 = Uz, U2; =— 0 if g >0 GMM(U ,U) — Zi:l mm{u,;,vz-}
% o ~ . ) 2D R
U2i—1 = O, U9g; = —U4 if U; S 0 Zi:l max{ui,vi}
2D . ~ o~ P
pGMM(u,v;p) = Z;zl (mm{?f“ ?fl}) GMM kernels produce
D i1 (max{d;, 0;})" accurate classification results
Dataset # train  # test # dim # class linear RBF GMM pGMM (p)
SEMG 1800 1,800 2,500 6 193 29.0 54.0 56.1(2)
DailySports 4,560 4,560 5,625 19 77.7 976  99.6 99.6 (0.6)
M-Noisel 10,000 4,000 784 10 60.3 66.8 714 85.2(80)
M-Image 12,000 50,000 784 10 70.7 77.8 809 89.5(50)
PAMAP101 188,209 188,208 51 20 75.3 — — —
Covtype 290,506 290,506 54 T+ 7B — — —
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From Hashed Data to Features

CIKM 2022

Plit, = it] ~ P((il,£) = (i3, )] = pGMM(u, v)

v

Hashed data are ID (categorical) features and should be expanded by one-hot representation.

For example, with k = 3 hashes (3, 0, 1), each in b = 2 bits, we can expand them to be 12-dims

(3,0,1) = [10000001 0010]

GCWSNet has two main parameters: k = number of hashes, and b = number of bits per hash
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Accuracy

GCWSNet: CWS + Neural Nets

CIKM 2022

e C(Classification on the SEMG dataset using neural nets with L layers and H hidden units.
L = 1: logistic regression. L = 2 means one hidden layer.

e Dashed (black) curve = the original data

e GCWSNet with k = {64, 128, 256, 512} hashes and b = 8 bits for each hash.

e For this dataset, GCWSNet substantially improves
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On UCI Covtype dataset,
GCWSNet substantially
improves the accuracy.

GCWSNet also converges
much faster.
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Accuracy at the first epoch.

GCWSNet convergest fast.
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Algorithm 1 Generalized consistent weighted sampling (GCWS) for hashing the pGMM kernel.
Input: Data vector u; (i =1 to D)

Generate vector @ in 2D-dim by (1).

For 7 from 1 to 2D
ri ~ Gamma(2,1), ¢; ~ Gamma(2,1), Bi ~ Uniform(0, 1)
bk [pE Bz'J, a; + log(c:) — rifti + 1 — Bi)

End For l

Output: i* < argmin; a;, t* < t;-

It is mathematically equivalent to applying
o Dl (min{a;, v; })? power transformation on the original data.

pGMM(u,v;p) = =55 5
Zz l(max{uz Uz}) However, GCWSNet (with parameter p)

would be substantially more stable. 153
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pd

RFF
= normalized random Fourier features

RFF and NRFF perform very poorly
compared to GCWSNet.

Even with k = 8192 hashes (dashed),
NRFF still performs very poorly.
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Other Hashing Methods

Conditional Random Sampling (CRS, smallest-k sketch)
Minwise hashing

One permutation hashing (OPH)

Circulant minwise hashing (C-MinHash)

Partitioned b-bit hashing (Pb-Hash)

Extremal processes
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Term-based Representations?

Still very useful and should not be ignored.
Simple and can be powerful if used properly, e.g., with query augmentation/expansion.
Often very high-dimensional and even the storage can be a bottleneck if materialized.

Hashing can be effective if good hashing methods are adopted. Since data are highly
sparse, their non-zero locations themselves carry strong information. Making good use of
the prior information is beneficial. Certain popular hashing methods like random projections
“destroy” the sparse structure and would not expect to work well on sparse data.
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A fun experiment in 2004/2005 at Microsoft Research

Table 1 We expected the counts for single words are exact and stored.
Page hits for a few high-frequency words and a few low-frequency words

Query Hits (MSN.com) Hits (Google)

A 2,452,759,266 3,160,000,000

The 2,304,929,841 3,360,000,000

Kalevala 159,937 214,000

Griseofulvin 105,326 149,000

Saccade 38,202 147,000

Ken Church
https://www.linkedin.com/in/kenneth-church-a902772

Table 2
Estimates of page hits are not always consistent. Joint frequencies ought to decrease
monotonically as we add terms to the query, but estimates produced by current state-of-the-art

search engines sometimes violate this invariant.
We expected the counts for the

Query Hits (MSN.com)  Hits (Google) intersections of two or more
America 150,731,182 393,000,000 words are estimated because
America, China 15,240,116 66,000,000 there would be way too many.
America, China, Britain 235,111 6,090,000

America, China, Britain, Japan 154,444 23,300,000 159
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A fun experiment in 2004/2005 at Microsoft Research

Table 3

This table illustrates the usefulness of joint counts in query planning for databases. To minimize
intermediate writes, the optimal order of joins is: ((“Schwarzenegger” M “Austria”) N
“Terminator”) N “Governor,” with 136,000 intermediate results. The standard practice starts
with the least frequent terms, namely, ((“Schwarzenegger” M “Terminator”) N “Governor”) N

” Austria,” with 579,100 intermediate results.

Query Hits (Google)
Austria 88,200,000
Governor 37,300,000
One-way  Schwarzenegger 4,030,000
Terminator 3,480,000
Governor, Schwarzenegger 1,220,000
Governor, Austria 708,000
Schwarzenegger, Terminator 504,000
Two-way Terminator, Austria 171,000
Governor, Terminator 132,000
Schwarzenegger, Austria 120,000
Governor, Schwarzenegger, Terminator 75,100
Three-way  Governor, Schwarzenegger, Austria 46,100
Schwarzenegger, Terminator, Austria 16,000
Governor, Terminator, Austria 11,500
Four-way Governor, Sch\-varzenegger, Terminator, Austria 6,930

Query execution optimization:

Suppose the goal is to find all the
intersections among 4 words.

Intuitively we should start with two
“shortest” words. But in this
example, the two shortest words are
almost semantically identical.

It would be a lot better to start with

“Schwarzenegger” and “Austria” 160



Classical contingency table estimation problem

Let P denote “postings” (or inverted index) for the word, i.e., P contains a list of document IDs which
contain that particular word. The size of the postings for single words can be assumed to be known
(and stored). The goal is to compute (or estimate) the intersections among two postings.

a=P1NPy|, b=|P1N=Py|, c=|-P1NP,|, d=|-P1 NP,

where =Py is short-hand for Q — Py, and Q© = {1,2,3,...,D} is the set of all document

W, ~W, W, ~W,
The task is to estimate “a” (and other cells) from
Wl a (xl) b (xZ) W1 Uy (Sl) bs (52) . .
the sample table. Obviously, we can estimate
~W, e () | d () W, | o (s3) | d(sq) “a” by a simple scaling D/Ds, but we hope to
make use of the marginal information: |P1| =
fTath hrate +b=f1, |P2| = a+c = f2, which dt
e D—a b e td a+b =11, = a+c = f2, which are assumed to

(a) Contingency table (b) Sample table be known. 161



MLE (maximum likelihood estimator)

W2 "‘WQ_ WZ NWZ
W a (xl) b (x2) W 2% (Sl) bs (SZ)
| | a log Pr(aS/bS/CS/dS |D€!a)
Wi ¢ (0n) | d(x) ~Wil co(s3) | di(sa) >aa — 0

f]=a+b f2=a+c
= ” 1 Df:as+bs+cs+ds

L7 o T OOTeTH

(@) Contingency table (b) Sample table

Considering the margin constraints, the partial likelihood Pr (a5, bs, cs, ds|Ds; a)
expressed as a function of a single unknown parameter, a:

GHEEO@ _ @O EC )

PE (Gl 6| Bt} — ™ = -
(n —f:zLicj:fid) (11)3)
oty BB ha)  (O—fi-fita)
(@ —as)! (fl —a — by)! (fz—H—Cs)' (D —h — 5+ —dy)!
as—1 bs—1 c.—1 ds—1

:Ha—t)fol—a—z xH(fz—a—t H(D—f1—f2+ﬂ—i)
i—=0

We can take log and hope
to simplify the expression.
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MLE (maximum likelihood estimator)

The MLE solution can be quite complicated:

—1 bs—1 cs—1

Za—z Zﬁ—a—z Zfz—a—z+ZD — fi f2+a—z =0

=0

It can be simplified to be

1 1 1 1 1
fi—a+1 f—a+l1-8 fo—a+1l fr—a+1—c

+(D_f11—f2+ﬂ_D—fl—}2+a—ds>+(%_a—las> :0

Still complicated 163



Simplifying the MLE by sample-with-replacement

With the “sample-with-replacement” assumption, the likelihood function can be simplified

rinusativinn = (o,%,0) () (B) (8)" ()

o a®(fy —a)*(fo — a)*(D — f — fo +a)*

The MLE solution is then a cubic equation:

Still complicated 164



From cubic to quadratic, a “brave” simplification

un

We can imagine there are two independent binomial problems for the same “a”.

R () (5 (G5 () (28]
xa® (fi —a)* (f —a)"

The MLE solution is then a quadratic equation:

20, bs ¢ _
a fl—ll f2—(1

0

with a closed-form solution:

o fl (2&5 + Cs) +f2 (2115 - bs) T \/(fl (2(15 £ Cs) _f2 (2&5 + bs))z W 4f1f2bscs

a —
—— 2(2a5 + by + ¢5)

This is a very accurate formula for solving the original contingency table estimation problem.
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References to the quadratic formula

[1] Using Sketches to Estimate Association, EMNLP 2005

[2] A Sketch Algorithm for Estimating Two-Way and Multi-Way Associations.
Computational Linguistics 2007
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How to obtain good samples

Can we simply use a very large sample size (Ds)?

In early 2007, during a visit to AT&T Labs, Divesh asked me this exact
guestion. My answer was that, since the data are sparse and we
store only non-zero locations anyway, using a large sample size (Ds)
should work reasonably well, but there are better methods.

Divesh Srivastava A
https://www.linkedin. com/|n/d|vesh srivastava- 98a5b2/

We adopted the idea from Andrei and his colleagues on
“minwise hashing” (actually the method was not
“minwise” to start with in 1997). Many prominent
researchers including Moses Charikar, Piotr Indyk,
Michael Mitzenmacher etc have made contributions t%7
minwise hashing, which has had numerous appllcatlons.

Andrei Broder
https://www.linkedin.com/in/andrei-broder-b2159/
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We first apply a random permutation on all postings (inverted indexes) and keep the first a few non-zero

Sampling only from non-zero locations

locations . Later, we estimate the original similarity (between postings) for each pair of sketches.

[P1 NPy
[P1 UP,|
P11
P2 |2
P3| 1
P4 |2
Ps |1

= R Resemblance

N W W A~ A

7 11 13 15
g 10 11 13
6 9 10 14

6 8 9 11

(a) Postings

12 13 14 15

1 — 11
2—3
3—9
4 — 13
5—1
6 —7
7 — 12
8§ —™ 10

9 —5
10 —14
11 —15
12 —4
13 —6
14 —2
15 —38

(b) Permutation 7

K, = MIN, (z(P), Ko = MIN, (z(P,))

K1
K2
K3
K4
Ks

6 8 11

6 10 12

> 7 9

6 12

2 3 4 5 6

Y ° B O B U'S B

(¢) Sketches

This step is the same as in the original (bottowm-k version) of minwise hashing by Broder et al.

Our method (published in 2005) differs in the estimation procedure.
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Broder’s (1997) original estimator

An unbiased estimator based on hypergeometric was proposed in 1997 by throwing away half samples:

R, = IMIN(K; UKy) NK; NKy| PPy
IMIN;(K; UK)| PUP,|

Note that intersecting by MIN;(K; UK,) throws out half the samples

In 2004 (published in EMNLP 2005), we developed “Conditional Random Sampling (CRS)” to avoid throwing away

half of the samples. It turns out the CRS generalizes naturally to non-binary data (published in NIPS 2006, 2008).
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Conditional Random Sampling (CRS)

Suppose for two postings (inverted indices), we take (after permutation)
the first 7 non-zero locations (light gray box) as the sketches.

Py3 4 7 9 10 15 18 | 19 24 25 28 33

Ppj2 4 5 8 15 19 21| 24 27 28 31 35

We claim that we would obtain exactly the same samples if we simply take the first 18 (=min(18,21))
columns from the equivalent binary (0/1) data matrix. But since we apply the permutation on
columns, any columns (including the first 18 columns) would constitute a random sample.

This way, we effectively obtain a random sample for each pair with the sample size determined only at
the estimation time. Then, we can apply good estimators from statistical theory. In particular, we still
throw away some samples (in this case, “19”,/721”), but not as many as one half. 170



CRS for Non-Binary Data

A great advantage of CRS is that it is natural applicable to non-binary data. It is also natural
to use CRS for three-way and multi-way similarities, because we have a random sample.

1123 456780D 11 23 456 780D | |
R[] | [ssms] | N [e[eams] [sams[ms ! || -
2| I 1110 2| I ] 2 2| N
| [emieml | e 3RO I T T 3 3| HEE
4 C ] C ) .. 4 HMEEEENE . 4 4| N .
) I N O | ||| 5| IR 5 |
o OO o e | - | NN
(a) Original (b) Permuted (c) Postings (d) Sketches
|1 234567 89 10i11 12 13 14 15
Figures from NIPS 2006 paper. 0 1020 100 2il 00 o
g Pap 130012010 0i3 00 2 1 NIPS 2008 showed it is better to

use 10— 1 =9 as the sample size.

4(2) 6(1) 9(1) 10(2) 11(1) 13(1) 15(2) K 2() 42
3) 5(1) 6(2) 8(1) 11(3) 14(2) 15(1) Ky 1(D) 2(3)

(b) Postings (c) Sketches

6(1) 9(1) 1002)
51 62 8(1) [HNE)

w2

Therefore, we have a one-sketch-for-all scheme. The drawback of CRS is that the sample size Ds is
determined only at the estimation time and Ds is different from different pair (or group) of sketches,

meaning that we do not have a metric space and CRS can not be used for certain applications. 171



References for CRS

[1] Stable random projections and conditional random sampling, two sampling technigues for modern massive
datasets, Ping Li’s PhD Dissertation, 2007

=5, AL

Prof. Trevor Hastie Prof. Art Owen Prof. rRobert T

[2] Using Sketches to Estimate Association, EMNLP 2005

[3] Conditional Random Sampling: A Sketch-based Sampling Technigue for Sparse Data. NIPS 2006

[4] A Sketch Algorithm for Estimating Two-Way and Multi-Way Associations. Computational Linguistics 2007
[5] One Sketch For All: Theory and Application of Conditional Random Sampling. NIPS 2008

It appears that CRS (or “bottom-k” sketch) later has become very useful in other areas too.

Another half of the thesis is about “stable random projections”. 172
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Minwise Hashing and Related

Originally developed by Andrei Broder and his colleagues in late 1990s, minhash is one of the a few
randomized algorithms that is widely used in practice.

Minhash was originally motivated by the near-duplicate detection task, reported in 1997. It was “bottom-k”
and became the “minwse hashing” form since the 1998 STOC paper, by using k permutations.

b-bit minwise hashing was developed, by storing only the lowest b-bits of each hash value. (WWW 2010)

A paradigm was developed for using b-bit minwise hashing in large-scale machine learning. (NIPS 2011)

One permutation hashing (OPH) was developed by breaking data vectors into k bins. (NIPS 2012)

OPH needs to be densified (filling the empty bins) in order to use OPH for ANN. (ICML 2014, NIPS 2019)

Circulant-MinHash (C-MinHash) reuses one permutation to replace k permutations. Combined with OPH,

C-MinHash only reduces 1/k permutation (instead of k or 1 permutations). (ICML 2022 and arXiv reports).
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Extensions to non-binary data: consistent weighted sampling, extremal processes sampling, etc.


https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/wfc0398-liPS.pdf
https://proceedings.neurips.cc/paper/2011/file/0a1bf96b7165e962e90cb14648c9462d-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/eaa32c96f620053cf442ad32258076b9-Paper.pdf
http://proceedings.mlr.press/v32/shrivastava14.pdf
https://proceedings.neurips.cc/paper/2019/file/9f067d8d6df2d4b8c64fb4c084d6c208-Paper.pdf
https://proceedings.mlr.press/v162/li22m/li22m.pdf
https://arxiv.org/pdf/2111.09544.pdf

MinHash for high-dimensional 0/1 data

One Major Source of High-Dimensional Data: Histogram

Histogram-based features are very popular in practice, for example, natural language

processing (NLP) and computer vision.

It can be viewed as high-dimensional vector: |u; > 0, ¢ =1,2,.... D

0.2

frequency
o
=] &
-~ o

o
o
&

u

The size of the space ) can often be extremely large. For example, [ can be the total

number of words, or combinations of words (or characters, or visual words).

In search industry, [) = 204 s often used, for convenience.
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MinHash for high-dimensional 0/1 data

An Example of Text Data Representation by n-grams

Each document (Web page) can be viewed as a set of 7.-grams.

For example, after parsing, a sentence “today is a nice day” becomes
e 1 — 1. {“today”, “is”, “@”, “nice”, “day”}
o 1= 2: {“today is”, “is @", “a nice”, “nice day”}
e 1= 3. {“todayis a”, “is a nice”, “a nice day”}

It is common to use 711 > 5.

Using n-grams generates extremely high dimensional vectors, e.g., ) = ( 10°)".

(1 (')‘_")'.’ — 1025 = 283, although in current practice, it seems ) — 204 suffices.

As a highly successful practice, n-gram representations have many variants, e.g., word

n-grams, character n-grams, skip n-grams, etc. 175



MinHash for high-dimensional 0/1 data

Minwise Hashing: Notation

A binary (0/1) vector <= a set (locations of honzeros).

Consider two sets 51,5 C 2= {0,1,2,...,D — 1} (e.g., D = 26%)

=

Sv]l: [2 =

S‘2|A‘ a = |AS'1 N LS_’Q

The resemblance 1 is a popular measure of set similarity

|51 N Ss| a s it P—— a 2
= = : s it more rational than !
S$1US8| fitfa—a f1rfe
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MinHash for high-dimensional 0/1 data

Minwise Hashing: Standard Algorithm in the Context of Search

The standard practice in the search industry:

Suppose a random permutation 7 is performed on €2, i.e.,
T: Q—Q, where Q) ={0,1,...,D — 1}.
An elementary probability argument shows that

1S, N Sel

Pr (min(7(51)) = min(7(52))) = [S1USs|

— i
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MinHash for high-dimensional 0/1 data

An Example

(V)

D=5 5, ={0,3,4}, S ={1,2,3}, R = {5103

- |S1US

[V}

One realization of the permutation 7t can be

0= 3
1=h2
2—10
J=4
4= 1

m(S1) = {3,4,1} = {1,3,4},  7(Ss) = {2.0,4} = {0,2, 4}

In this example, min(7 (57 )) 7# min(mw(S2)).
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MinHash for high-dimensional 0/1 data

Minwise Hashing in 0/1 Data Matrix

Original Data Matrix

01 2 3 45 6 7 8 9 101112 13 14 15

813 01001710¢061700°010:0 00
S 0000000010101010

® 0001001100000010
Permuted Data Matrix

01 2 3 4 5 6 7 8 9 101112 13 14 15

"$,)> 0010100100000100
"S,): 1001001000000 100

T[(S3)i1100000000101000

min(7(S1)) = 2, min(7(S2)) =0, min(7w(S3)) =0

179



MinHash for high-dimensional 0/1 data

An Example with & = 3 Permutations

Input: sets Sy, 5o, ...,

Hashed values for S : 113 264 1091
Hashed values for S5 : 2049 103 1091

Hashed values for S5 : ...
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MinHash for high-dimensional 0/1 data

Minwise Hashing Estimator

After k permutations, 71, 7o, ..., T}, one can estimate I? without bias:
1 k
Ry = Z Z 1{min(m;(S;)) = min(m;(S2))},
g=i
- 1
Var (RM) — —R(1—R).
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b-bit minwise hashing

Apply arandom permutation 7w on S7 and Sa: 7 : {2 — (2. Define
the minimum values under 7 to be z1 and za:

z1 =min (7w (S1)), 22 = min (7 (52)).

Define e1,; = ith lowest bit of 21, and e2; = ith lowest bit of z2.
Theorem | derives the main probability formula.

THEOREM 1. Assume D is large.
Collision probability is still

b
Ey = Pr (1:[1 L{e1: = e} = 1) =Cro+ (1= Co0) It granortional to R, the similarity

. . where
Arnd Christian Konig A
rL = if rg = 2
7 B
r2 r1
Cip=A A ;
1,b L . + A2,p Py
55 ) o
Cop=A A .
2.b 1,b i + A2 ——el
b_ b_
A o n [1 — '7“1]2 1 A T2 [1 — T'Q]z !
o ]_’b s 2b 3 2,b - 2b
1—[1—r1] 1—[1—r2]

Theory and Applications of b-Bit Minwise Hashing, Communications of ACM 2011 (also WWW 2010) 182



https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/CACM_hashing.pdf
https://www.linkedin.com/in/arnd-christian-k%C3%B6nig-6264781/

b-bit minwise hashing for learning

Experiments on Webspam (3-gram) Data: Testing Accuracy
Hashing Algorithms for Large-Scale Learning, NIPS 2011

Accuracy (%)

C

e Dashed: using the original data (24GB disk space).

e Solid: b-bit hashing. Using b = 8 and £ = 200 achieves about the same test accuracies

as using the original data. Space: 70MB (350000 x 200) 183


https://proceedings.neurips.cc/paper/2011/file/0a1bf96b7165e962e90cb14648c9462d-Paper.pdf

One Permutation Hashing (OPH)

Intuition: Minwise Hashing Ought to Be Wasteful

Original Data Matrix

01 2 3 45 6 7 8 9 1011 12 13 14 15

S: 0100110010000000
S, 0000000010101010

¥ 0001001100000010

Permuted Data Matrix

01 2 3 4 5 6 7 8 9 101112 13 14 15

MS,): 0010100100000100
) 1001001000000100

™S 1100000000101000

Only store the minimums and repeat the process £ (e.g., 500) times.

184



One Permutation Hashing (OPH)

One Permutation Hashing, NIPS 2012

51,858,855 € 5 = 0,1,

three binary (0/1) vectors:
w(8r) = (24,718}, =(8:)=17{0,6/18}, @ (S:)={0,1,10,12}
1 1 2 1 3 1 4

1 1 1
01 2 334 5 6 7,8 9 10 11,12 13 14 15
1 1 ]

] 1 1
n(S1>:0010:1001:0000:0100

..., 15} (i.e., D = 16). The figure presents the permuted sets as

1 1 1
n(S,): 100 1001 0!'0000!0100
1 ] I

™S,): 1100,0000,0010,17000

One permutation hashing: divide the space {2 evenly into & = 4 bins and select the
smallest nonzero in each bin.

185


https://proceedings.neurips.cc/paper/2012/file/eaa32c96f620053cf442ad32258076b9-Paper.pdf

One Permutation Hashing (OPH)

One Permutation Hashing, NIPS 2012

The estimator is simple: count the total number of matches in all bins, count the total
number of jointly empty bins. The following ratio estimator is (surprisingly) unbiased:

" S A Variance is slightly smaller
La ) (Rmat) =R S

mat — = , . . .
i — N than original minhash

= 1 1 1
Var (Rma ) =R(l1-R Fl———— 1 —_— | = —
" T ( ) ( (l‘ T *\emp) ( & f = ) f = 1)

Prof. Art Owen Prof. Cun-hui Zhang
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https://proceedings.neurips.cc/paper/2012/file/eaa32c96f620053cf442ad32258076b9-Paper.pdf
https://www.linkedin.com/in/art-owen-6736273/
https://www.linkedin.com/in/cun-hui-zhang-27379557/
https://www.linkedin.com/in/cun-hui-zhang-27379557/

Main issue with OPH : empty bins

-
- j\/ mat

mat — -
fr— 1N6771p

Total number of matches is an inner product.
Total number of jointly empty bins, however, is unknown until estimation time.

The overall estimator cannot be written as an inner product. It does not satisfy
the requirement of locality sensitive hashing (LSH), unlike the original minhash.

Examples of researchers
who made substantial
contributions to LSH

Prof. Rajeev Motwani  Prof. Piotr Indyk Prof. Moses Charikar 187



https://www.linkedin.com/in/moses-charikar/
https://people.csail.mit.edu/indyk/
https://web.stanford.edu/~ashishg/cgi-bin/RememberingRajeev/?p=1

Minwise hashing for approximate near neighbor search

Specifically, we hash the data points using & random permutations and store each hash value using
b bits. For each data point, we concatenate the resultant B = bk bits as a signature (e.g., bk = 16).
This way, we create a table of 2 buckets and each bucket stores the pointers of the data points
whose signatures match the bucket number. In the testing phrase, we apply the same k& permutations
to a query data point to generate a bk-bit signature and only search data points in the corresponding
bucket. Since using only one table will likely miss many true near neighbors, as a remedy, we
independently generate L tables. The query result is the union of data points retrieved in L tables.

Index Data Points

Index Data Points

00:00 . 6. 770, 143

An example with L = 2 tables, (o0 01 '3, 36, 217
b = 2 bits, and k = 2 hashes 00 10 (empty) |

11 .01 i5 14,206 |

00; 00 .8, 159, 331

0001 71, 25, 99
00 10 ;3 14,32 97 |

11 01 7,49 208

11 :10 !31, 74, 153

11:10 ;33 489

11111 ! 21, 142,329

1111 16,15, 26,79

Typically, one might want
to use b = 2-4 bits, k =
4-12, and L as large as
possible

With one permutation hashing (OPH), however, the empty bins would not be able to provide useful
information, i.e., we don’t know which bin to put the data points into, if part of the hash is empty.
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OPH with empty bins for ANN

i ; 2 i 3 5 4
e . . 1 1 1
Densifying One Permutation 01 2 334 5 6 718 9 10 11412 13 14 15

Hashing via Rotation for Fast Near ' : '

1 1 1
] F(S1)10010-1001-0000-0100
Neighbor Search, ICML 2014 ' 1 3

1 ] 1
mS,: 100 1!001010000!0100
1 1 ]

S, 1100,0000,0010;,17000

Three strategies to deal with empty bins. First two do not work well.

1. Empty Equal (EE): we assign empty bins a fixed symbol. Then any empty will match with any other empty
bin. This will create a lot of spurious matches, i.e., will retrieve many unnecessary data points.

2.  Empty Not Equal (ENE): we assign empty bins random numbers. The chance for two empty bins to match
is very small. This strategy will likely retrieve too few data points.

3. Proper densification: We can always borrow hash values from the closest (in fixed direction) non-empty
bins. There are many variants and “optimal” schemes, after the 2014 ICML paper on densification. 189


http://proceedings.mlr.press/v32/shrivastava14.pdf
http://proceedings.mlr.press/v32/shrivastava14.pdf
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OPH with empty bins for ANN

0
10 : po
MNIST B g
10_1""“KF19i"“_m"_.z;ffiﬂééﬂ_”““"__j”“
e Densifying One Permutation
1072 LT Proposed |  Hashing via Rotation for Fast Near

Neighbor Search, ICML 2014

Minwise

10'3 _______________ ; ________________________ ; _________________________ ; _____

Fraction Retrieved

-4

107 I N S -
5 3 ENE '

=9

10 20 30
L (Number of Tables)

1. We plot the fraction retrieved (compared with the total) versus L, the number of tables. We can see that
the proposed densification scheme works well and matches the performance of original minwise hashing.

2.  Empty Equal (EE) retrieves too many points and Empty Not Equal (ENE) retrieves too few data points.
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The most recent strategy for OPH densification

Re-randomized Densification for One Permutation Hashing and Bin-wise Consistent \Weighted
Sampling, NeurlPS 2019

In the paper, four different densification schemes are theoretically analyzed
and compared.

Rs, RsRe, Den, DenRe (Densification with Re-randomization). We will not
explain the details here, but nevertheless, we still paste the main variance
calculations here to show that they can be analyzed, via non-trivial efforts.

191


https://proceedings.neurips.cc/paper/2019/file/9f067d8d6df2d4b8c64fb4c084d6c208-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/9f067d8d6df2d4b8c64fb4c084d6c208-Paper.pdf

Theorem 1. Let Eo(m) be 1 (fmu]m Lunma] Let fi =|S|, fo=|T|, a=|SNT|, f=|SUT|=
fitfe—aandJ= % J = Cmp is the number of empty bins out of first M < K bins. If
M > K, then ’\C\;’w = \ Mc huu . . .
Cw s Re-randomized Densification for One
Var (JA i N . . . . .
ar (Ji2) = uf* i 11 Permutation Hashing and Bin-wise Consistent
Viar [ I 5.) = + = = Hy— J2. . .
or (Jhone) = 37+ =31 Weighted Sampling, NeurlPS 2019

If M < K, then

]E[\” (2M —NM __1)E; — J?,

emp emp

Var (3.,) = 3 + 2 EI(M - NM_)(M — N, — 117+ 5 g

[ B, i TR ‘ '
1-c1.;-(J,‘)’F,]HP) 1 + 5Bl — N2, (M - N2, — 1).7] 4 u [NM _(2M — NM_ —1)|E;, — J?,

Here we use “J” to

R stand for resemblance.

Var (fg,’) = \} [KX(Var (Ig) +J7) + (M- K)M + K —1)E, +(M — K)J] - J?,
2

Var (e ) = 3 (Var (FBeniee) + %) + (M = K)(M + K = 1)Ez + (M — K)J] - J%,

= B —NK ~
where By = B[ —fr— + (1— k= )J.J]uszg:E[%JHFW)U}

<<<<< P emp

In the paper, four different densification schemes are theoretically analyzed and
compared.

Rs, RsRe, Den, DenRe (Densification with Re-randomization). We will not explain the
details here, but nevertheless, we still paste the main variance calculations here to show
that they can be analyzed, via non-trivial efforts.
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The most recent strategy for OPH densification

We estimate resemblance

between two word
vectors: “Hong” and

“Kong”, by generating M
samples with K bins and

four denstification

methods to fill empty bins.

107

102

@ 153
E10

10

10°
i

512

—Rs

—RsRe

=—Den

—DenRe

= =MinHash|
HONG - KONG ~
Binary: K = 1024 E

0 10’ 102 10°

Sample Size (M)

—Rs
—RsRe
—Den
—DenRe

- -MinHash|]

HONG - KONG =
Binary: K = 1024

1024
Sample Size (M)

2048

MSE

MSE

107

—Rs
—RsRe
. —Den
10 —DenRe
= =MinHash
107
HONG - KONG
Binary: K =512
10 Y
100 10' 102 10°
Sample Size (M)
—Rs
—RsRe
—Den
—DenRe
- =MinHash
107 .
Binary: K = 512 e
256 512

Sample Size (M)

Empirical mean square
error (MSE) of
estimates are compared
with the theoretical
variances (dashed).
They match well.

Take-away message: we will be able to use just one permutation (instead of K permutations),
with advanced densification methods to fill the empty bins, to generate M hash values, where

M can be even larger than K. The accuracy is in fact better (lower MSE) than original minhash
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Circulant MinHash (C-MinHash)

If we don’t do densification, we can still just use “one permutation” by circulant hashing trick.

Consider a binary vector with
three non-zero locations at 2, 4, 5

Vo = Vs = Vs = 1.

Suppose we have a permutation. By (circulant) shifting 1, we obtain another permutation.

m.,=158173,462)} m_.+1 =12,58,1,7,3,4,6}

Circular

Hash value =1

Hash value = 3 o
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Circulant MinHash (C-MinHash)

Algorithm 1 Minwise-hashing (MinHash)

Input: Binary data vector v € {0, 1}7;
K independent permutations 71, ..., mi: [D] — [D]
Output: K hash values iy (v). ..., hi (v)
Fork=1t0 K
hi(v)  ming., 20 ,(i)  Original minhash
End For

Algorithm 2 C-MinHash-(0, 7)
Input: Binary data vector v € {0, 1}7;
Permutation vector 7: [D] — [D]

Circulant minhash
without initial
permutation

Output: Hash values hy(v), ..., hg(v)
Fork=1t0 K

Shift 7 circulantly rightwards by k& units: 7, = 7,
fo1.(0) 4= Mming., 20 T7(7)

End For

Algorithm 3 C-MinHash-(o, )

Input: Binary data vector v € {0,1}”;
Permutation vectors m and o: [D] — [D]

Output: Hash values hy(v), ..., hg (v)

Circulant minhash with an
independent initial permutation

Initial permutation: v’ = o (v
Fork=1to K
Shift 7 circulantly rightwards by & units: 7, = 7_,,.
hi(v) <= ming., 4o (1)
End For

Algorithm 4: the same
C-MinHash-(7,7) initial permutation can
be re-used for hashing

C-MinHash: Improving Minwise Hashing with
Circulant Permutation, ICML 2022
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C-MinHash is provably more accurate than MinHash

Theorem 3.1. Let a, f be defined as in (6). When 0 < a < Theorem 3.4 (Uniform Superiority). For any two binary
F <D (I #{0,1}), we have vectors v,2w € {0,1}F with J # 0 or 1, it holds that
Varld, ] = i " (K —’1)5 _ © Var[Js - (v,w)] < Var[Jyg(v,w)].
K K
where | = max(0, D — 2f + a), and “)” stands for resemblance
D—f— e . . . . . .
E-y lo a(go + l2) 5 v C-MinHash: Improving Minwise Hashing with
= \F+tg+g  (F+g+a)f s ; ;
= . . o R e Circulant Permutation, ICML 2022
) ) e | | )|
o '
[ x107* %1074
S P il 3 [MinHash g=°" Toag
4 MinHask® 0.2 " in as-_.ﬂ‘ H
The feasible set = = {lo,l2, g0, g1} satisfies the intrinsic N " 2 - 0.2 \\
constraints (7), and < -~
<-.§" 2 [ <r~$
n=go—(D—f—s—g1), no=D—f—s— g, E >’551 -
ng=Ilb—go+(D—f—s5—g1), 1= ¢ D=1 ]
na=l —(D—f—s—g). f/  D=1000 K=500 : m !
R 0 02 04 06 08 1 0 02 04 06 08 {1
Whena=0orf=a(J=0o0rl) Var[J, ] =0. J J

An example to illustrate that the theoretical variance
of C-MinHash is smaller, compared with MinHash. 196
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Integration of C-MinHash with OPH

C-OPH: Improving the Accuracy of One
Permutation Hashing (OPH) with Circulant
Permutations, arXiv 2021

Original MinHash : K permutations

OPH : 1 permutation, densification needed

C-MinHash: 1 permutation (2 permutations merely for theoretical analysis)
C-MinHash + OPH: 1/K permutation

Note that these are exact permutations instead of approximations (such as
universal hashing). In prior practice, users cannot store K permutations hence
resort to approximate permutations. Now, it is expected that users can store 1
permutation, or at least 1/K permutation. Therefore, it is probably the time to
move the practice from approximate to exact permutations.
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Pb-Hash: Partitioned b-Bit Hash

https://arxiv.orq/pdf/2306.15944 .pdf

Pb-Hash = break the bits of a hash code into m chunks and use them as separate hashes.

Interestingly, Pb-hash can be applied to dealing with massive ID features, not just from hash.

Categorical feature x Categorical feature x

Fiiahepaiies [log(#Categories)/M|
In this motivating example, — —— T — R Ty e
: EEESEESIS SEn (e (88
massive ID features correspond 11510131 6110115 ool [ 1eiel | 8ie
- : Embedding size 1818161318118 oie | | iere] 188
to big models in search and ads. 881818181 SSllee] |88
They typlca”y reqUIre a huge ol iofioiiofio}io iof {0 iof o Qi iQ
embedding layer. If we break the - Ve Sneat max, prod 20
. o) [¢) YA {0 [¢)
ID feature into m = 3 chunks, the s 18 g - -
. . JRty @) o) 4 ' o )
model size and embedding table §_,§_,§ . }#Clams §§§—>§—>§ }#am
can be drastically reduced. o o o B S 19 g 18
o B 18 o 8 8
0 [®) o o

|
|

QR-hash (m=2) is a special Hidden Layers Hidden Layers
instance fOF th'S part|CUIar case. Embedding table lookup Pb-Hash lookup 198
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Pb-Hash: Partitioned b-Bit Hash

https://arxiv.orq/pdf/2306.15944.pdf

Many hash algorithms (e.g., minwise hashing) produce k hashes of B bits, where B might be
originally very large such as 64, or 32. They correspond to ID features in 2B dimensions.

The idea of b-bit hashing is to use the lowest b bits out of the B bits. This significantly
reduces the storage and the dimensionality, from 2B to 2*b. The loss of accuracy can
typically be compensated by somewhat increasing k, the number of hashes.

The idea of Pb-hash is to divide the B bits into m chunks with b x m = B, and treat each
chunk as a separate hash. This way, we can re-use the hashes in a more effective way.

However, re-using the same original hash will hurt the performance due to correlation
(because they are not independent hashes). This effect can be fairly accurately calculated,
which provides guidance to the design such as the choice of m.
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Benefits of Pb-Hash

https://arxiv.orq/pdf/2306.15944.pdf

Generating hashes can be expensive for industrial-scale systems especially for many
user-facing applications. Thus, engineers may hope to make use of each hash as much as
possible, instead of generating more hashes (i.e., by increasing the k).

To protect user privacy, the hashes might be artificially “polluted” and the differential privacy
(DP) budget is proportional to k. See arXiv 2023.

After hashing, the original data are not necessarily stored and hence it might not be even
possible to generate more hashes.

One special scenario is that we can also apply Pb-Hash to the original categorical (ID)
features, not just limited to hashed data. This is also the motivation for QR-Hash
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The Basic Assumption of Pb-Hash

https://arxiv.orq/pdf/2306.15944 .pdf

Basic Assumption: Apply the hash function h to two data vectors u and v to obtain h(u) and
h(v), respectively, where h(.) € [0,1,2,...,28 —1]. The collision probability is Pr (h(u) = h(v)) = J.
h®) (u) and h(®) (v) denote the values by taking b bits of h(u) and h(v), respectively, with

P, = Pr (h(b)(u) = h(b)(v)) =cp+(l—cp)d, = % (2)
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Theoretical Analysis of Pb-Hash

https://arxiv.orq/pdf/2306.15944 .pdf

Recall the Basic Assumption: P, = Pr (h\%(u) = h\"(v)) = ¢ + (1 — &) J, ¢ = 5. With

20
Pb-Hash, the basic idea is to break the total B bits into m chunks. Let > ", b; = B, and later we
can assume by = by = ... = b, to simplify the expressions. Then, we have the following expectations:
E () = ey + (1-,)J (5)
m m m
E (Z%) = e, + > (1—cp). (6)
i=1 i=1 i=1
which allows us to write down an unbiased estimator of J:
. m. p. . o
Jm - T%:’L:l b . ;221 Cb; ) (7)
Zi:l(l - Cbz‘) Zi:l(l - Cbi)
Theorem 2.
E (Jm) =7 (8)

( ~ ) Zgl Pbi(l _Pbi)_l'zz‘#i’ (Pbi+bi' —Pbipbi/)
(E7 (1= b))’ |

where ¢, = ob; Py, = cp, + (1 —cp,)J, Pbi+bi’ = Cbi+by + (1- Cbi+bi/)‘] (10)
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Theoretical Analysis of Pb-Hash

https://arxiv.orq/pdf/2306.15944 .pdf

Proof of Theorem 2. Firstly, it is easy to show that

E(jm>:J, Var( ) Var(ZPb> <;1—cbi)>2.

Then we expand the variance of the sum:

Var <; Pm) = Z Var (Pbi) + Z Cov (Pbi, Pbi,)

i=1 i#i
—ZPb (L=Py)+ ) (Posb, — PoBy,) -
£t

Here we have used the Basic Assumption. ]

The key in the analysis of Pb-Hash is the covariance term C'ov (Pbi, Pbi,), which in the indepen-

dence case would be just zero. With Pb-Hash, however, the covariance is always non-negative. This
is the reason why the accuracy of using m chunks of b-bits from the same hash value would not be
as good as using m independent b-bits (i.e., m independent hashes).
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Theoretical Analysis of Pb-Hash

Lemma 3. https://arxiv.orq/pdf/2306.15944 .pdf

Pb1+b2 _Pb1Pb2 20

is a concave function in J € [0,1]. Its mazimum is (1 — %) (1 — i), attained at J = 1/2.

201 2b2
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Figure 2: Plots to verify Lemma 3 that Py, 14, — P, Py, > 0. Left panel: Py, — Pb2. Right panel:

Py, — Py Py, It is interesting that in both cases, the maximums are attained at J = 1/2. 204
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https://arxiv.orq/pdf/2306.15944 .pdf

Rb_VW@@_jﬁLJ@+m—nu%—$)

YTTIa =g m(1l — cp)2J(1 — J) , mxb=25. (14)

When R, is close to 1, it means that Pb-Hash does not lose accuracy as much. Recall that, if we
have hashed values for building learning models, the model size is 22 x k, where k is the number of
hashes. By Pb-Hash, we can (substantially) reduce the model size to be m x 2° x k. In practice,
the ID features can have very high cardinality, for example, a million (i.e., B = 20) or billion (i.e.,

B = 30). Figure 3 implies that, as long as B is not too small, we do not expect a significant loss of
accuracy if m =2 ~ 4.
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Figure 3: Plots for B € {30, 24, 18,12} to illustrate the variance ratio R,,; in (14).
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Yar (jm) _B1-PR)+(m-1)(Pn—F)
N m(l —cy)2J(1—J)

Variance of Pb-hash over
variance of original hash.

The ratio ~= 1 means no loss
of accuracy.
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Experiment of Pb-Hash on Minwise Hashing

https://arxiv.orq/pdf/2306.15944 .pdf
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Left panel indicates that even with m = 16 (chunks), we do not observe loss of accuracy.

Right panel is the zoomed-in view to better tell the differences among due to different m.
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Experiment of Pb-Hash on CWS
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Figure 6: For the “Dailysports” dataset, we apply CWS and keep B = 12 bits for each hash value.
We choose b € {1,2,3,4,6,12} to run the linear SVM classifier. The left panel shows that when
b=1 and b = 2, we observe a substantial loss of accuracy. In the right panel, we zoom in to show
the Pb-Hash results (i.e., dashed curves). We can see with m = 2 ~ 4 the loss of accuracy is sma}hg
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Experiment on CWS and NN Embeddings
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Figure 7: For the “Webspam” (3-gram) dataset, we apply CWS and keep B = 16 bits for each hash
value. For every hash, we apply Pb-Hash with m € {1,2,4,8}. We connect every (sub)-hash to
an embedding of size 16. Next we aggregate m embeddings via four different pooling strategies:
concatenate, mean, product, and max. Then we connect the pooled embeddings with one hidden

layer of size 256. 209
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Consistent Sampling via Extremal Process

WWW 2021
Consistent Sampling Through Extremal Process

Ping Li, Xiaoyun Li, Gennady Samorodnitsky, Weijie Zhao
Baidu Research and Cornell University
10900 NE 8th St. Bellevue, WA 98004, USA
{liping11, v_lixiaoyun02, weijiezhao}@baidu.com, gs18@cornell.edu

Replace real-value computations with integers. Speed up the computations of CWS
Provide theoretical understanding on the origin and evolution of CWS.

Deliver insight for developing more efficient CWS algorithms in the near future.

Solve the notorious difficult problem of CWS (i.e., “0-bit CWS”), under the new setting.
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Consistent Sampling via Extremal Process

WWW 2021

Algorithm 1: Consistent Weighted Sampling (CWS). The
algorithm is shown using a vector v € R as an example.

1 Input: Data vector v; (i = 1 to D)
2 Output: Consistent uniform sample as a tuple (i*, t*)

0-bit CWS (“Relaxed CWS”)

P[(iy: ty) = (i, tyw)] = P[(iy) = (i,)].

: E“iF"r o g is a highly useful empirical observation
il B a in KDD 2015. However, no theoretical
justification has been conducted.

3 For every non-zero u;
ri ~ Gamma(2,1), ¢; ~ Gamma(2,1), p; ~ Unif(0,1)

log i
st |22+ fi), ap < log(es) —ri(ti +1 - i)

-

Note that, the line 5 of Algorithm 1,
We solve the analogous problem under

2Bl ai log(c;) —ri(ti +1 = i), the setting of extremal processes.

ti— |

1
involves some mathematical operations, e.g., logarithm, floor and ) 1
multiplication. In real implementation, these operations can be slow.
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Consistent Sampling via Extremal Process

WWW 2021

Operations only involve integers.

Algorithm 3: Extremal sampling (ES) for one hash sample. ~Algorithm 2: The procedure for simulating extremal pro-

cess containing [m, M].

1 Input: Data vector v € RP. data range [m, M]

Output: Consistent uniform sample (i*, ™) e e

[\

2 Output: extremal process X(t) composed of records set X

3 For every non-zero v; and jump times set 7~
4 Generate an extremal process X;(t) = (X, 7), 3 Initialize: generate random number r ~ exp(1), and set
5 withi X = [060:%010s cor®pe=ii]s T~ = [0 B woss Bl xo =m/r,tg=m; k=0
6  Find jsuchthatt; <o; < tj41, j € [0,k —1]; + While t < M
7 Zj < Xj,Sj < tj > ke—k+1
« Eiid For 6 r~exp(l),u ~Unif(0,1)
9 i* — arg max; zi, £ s 7 b — lp—q FXpql, XL xk_l/u
8 End While

X = [x0, x1, ...,xk_l], T = [to, t1, ..y tk]

=)

ES and relaxed ES estimators

K -3 -k
K 1{* (o) = it(w), t*(0) = t* . 2= 1Hij(0) = 5 (w)}
jES(U,W) = ZJ—I {lj & lJIiW) J(v) J(W)}: ]ES,r(U, w) - : : K : 212
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Consistent Sampling via Extremal Process

WWW 2021

Operations only involve integers.

THEOREM 4.4. (Relaxed ES estimator) Suppose v,w € RP are

non-negative vectors, and]AES,r is defined in Eq. (8). We have,
E[JEs,(v,w)] = P(i*(v) = i*(w)) = J(v,w) + R(v,w),

where the bias term

o] = 2.Gy 4 Vi(Wi — 0;) Zzch Wi(vi—Wi)’ o)

levzzllszWz Z,1W12,101VW1
Wlth Gv,w = {l = ,...,D < 0 < Oj < Wl}: andGU,W = {l =
D 0L W< v,-}. In addition, the MSE of]AEs,r(v,w) is

isg = U@+ REL- om RO i,
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Consistent Sampling via Extremal Process

WWW 2021
-3
——ES-Relaxed i —ES-Relaxed
—ES-Full e )| —ES-Full
of - ='Theo. bias | i - = Theory
L
8 Cé) 103
- i i v el - PAIN - PATIENT
107}
PAIN - PATIENT :
_2 1 ! 10-5 1 !
10° 10’ 10° 10° 10° 10" 10° 10°

The bias of relaxed ES is precisely predicted by theory. MSE can tell the difference.
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Summary of Extremal Process (ES)

WWW 2021

ES has a number of advantages over CWS:
o It avoided real-valued operations and hence can be computationally more efficient.

o We have carried out the theory for the “relaxed” version of ES.
o  Our study provides insights for further improvement of CWS in the near future.

ES exhibits one major disadvantage in that it needs to know the range of the data,
otherwise additional sampling steps are needed to expand the range during sampling.

Another disadvantage of ES is that we have observe empirically that the relaxed version
of ES is slightly less accurate (i.e., higher bias) than the relaxed version of CWS.
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Accurate and Efficient Boosted Tree Models

g x10* | |
: —e—RobustLogit ABC-Boost tree models
| —e—ABCRobustLogit (s=2,g=10)

45 - ¢ -xgboost
N —-e-LightGBM

e The series of works in 2007 - 2010 are behind
the success of several popular tree platforms.

SRR ek ST Yol aliah el Salintn aah

Test Errors
w

N

e ABC-Boost can be substantially more
accurate and more efficient in many datasets.

covtype: J =20, v = 0.
10’ 102 103 19*
Max Number of Bins

https://hunch.net/?p=1467, Discussions in 2010 about Ping Li’s boosting algorithms

Ping Li. ABC-Boost: Adaptive Base Class Boost for Multi-Class Classification. ICML 2009.

Ping Li. Robust LogitBoost and Adaptive Base Class (ABC) LogitBoost. UAI 2010.

Ping Li and Weijie Zhao. Fast ABC-Boost: A Unified Framework for Selecting the Base Class in Multi-Class Classification.
arXiv:2205.10927 2022.

Ping Li and Weijie Zhao. Package for Fast ABC-Boost. arXiv:2207.08770, 2022.

Ping Li and Weijie Zhao. pGMM Kernel Regression and Comparisons with Boosted Trees. arXiv:2207.08667, 2022.
Lecture notes on trees & boosting (pages 14-77) https://statweb.rutgers.edu/pingli/doc/PingLiTutorial.pdf 217
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Recent developments of trees and boosting

https://hunch.net/?p=1467

MACHINE LEARNING (THEORY)

Machine learning and learning theory research

8/23/2010 BY JOHN LANGFORD

Boosted Decision Trees for Deep Learning

About 4 years ago, | speculated that decision trees qualify as a deep learning algorithm

because they can make decisions which are substantially nonlinear in the input
representation. Ping Li has proved this correct, empirically at UAI by showing that boosted

decision trees can beat deep belief networks on versions of Mnist which are artificially

hardened so as to make them solvable only by deep learning algorithms. .


https://hunch.net/?p=1467

Recent developments of trees and boosting
https://hunch.net/?p=1467

Laurens van der Maaten

8/23/2010 AT 3:05 PM

After seeing Ping’s talk about this work in February, | spent some time reproducing his
results. Getting the same results as Ping turned out to be fairly easy. It certainly required a lot
less tweaking than reproducing the results of DBNs and the like on the same data sets.

This is certainly a huge advantage of trees!
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2010 Yahoo! Learning to Rank Grand Challenge

http://proceedings.mlr.press/v14/chapellella/chapellella.pdf (pages 18 —19)

Ping Li recently proposed Robust LogitBoost (Li, 2010) to provide a numerically stable
implementation of the highly influential LogitBoost algorithm (Friedman et al., 2000), for
classifications. Unlike the widely-used MART algorithm, (robust) LogitBoost use both the
first and second-order derivatives of the loss function in the tree-splitting criterion. The
five-level ranking problem was viewed as a set of four binary classification problems. The
predicted class probabilities were then mapped to a relevance score as in (Li et al., 2008).
For transfer learning, classifiers were learned on each set and a linear combination of the
class probabilities from both sets was used.

In memory of Olivier Chapelle  https://neurips.cc/virtual/2020/memorial/21606
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Recent developments of trees and boosting

Classical works on boosting and trees before early 2000 were developed by pioneers including Schapire,
Freund, Bartlett, Singer, Friedman, Hastie, Tibshirani, etc.

More recently, three major developments have made boosted trees more practical and more accurate.

1. The adaptive binning strategy for effectively transforming any data types into integers. This makes tree
implementations much more convenient and more efficient. [Ping Li et al, NIPS 2007]

2. The gain formula for tree-split using 2"%-order information. This (in retrospect) simple formula has often
made trees substantially more accurate. Using only 1%-order information sometimes did not beat kernel
SVMs. This formula is now the standard implementation of popular tree platforms. [Ping Li, UAI 2010]

3. The new derivatives (different from textbooks) of logistic regression by assuming a base class and

strategies for selecting the base class. These have improved the accuracy of many multi-class
classification tasks. [Ping Li, ICML 2009]
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The adaptive binning algorithm

McRank: Learning to Rank Using Multiple Classification and Gradient Boosting, NIPS 2007

o.o+ 1 8"

Tree algorithm only
splits where there are
data and makes
arbituary decision where
they are no data

SI.. § SR %

Bin 0 s Bin 1

For this split, two bins
(0,1) migth be sufficient.

Therefore, we can divide the each

V1 = Bin length
01 23 4567809 10 1112

dimention (feature) into equal-lengh bins
(for simplisity) but we only assign bins

where there are data. This strategy is simple

and effective.


https://proceedings.neurips.cc/paper/2007/file/b86e8d03fe992d1b0e19656875ee557c-Paper.pdf

Why this simple binning method works well?

We have been using this simple (fixed-length) binning method for 15 years. We expect there is ample room
to improve the algorithm, but surprisingly we haven’t found one that is universally (or largely) better, except
that when the maximum number of bins (MaxBin) is too small such as 10 or 20.

1. For discrete features such as {1, 2, 3,...}, this method does not impact the data.

2. The maximum allowed number of bins (i.e., the MaxBin parameter) should not be too small any way
for boosted trees. Too much information would be lost if the data are too coarsely quantized. With that

many bins (e.g., MaxBin = 1000), it is probably not so easy to improve this fixed-length strategy, as far
as the performance of boosting trees is concerned.

3. We should not expect all features would use the same number of bins. Typically, in one dataset, the
features can differ a lot. For example, some features might be binary (i.e., even using MaxBin = 1000
would only generate two values), some features may have just 100 distinct values (i.e., using MaxBin =
1000 would still just generate at most 100 values), and some features really need more quantization
levels. Therefore, the parameter MaxBin is just a crude guideline. Trying too hard to “optimize" the
binning procedure according to a given MaxBin is likely counter-productive in real datasets. 223



Gain formula for tree-split using 2nd-order information

Robust LogitBoost and Adaptive Base Class (ABC) LogitBoost, UAI 2010

This formula is behind the success of popular tree platforms:

1
i 2

N 2
' 2 .'“"f' o . ‘If\' » : .
'aiﬂ(f) — [ZE:] (.T'i;k B pi,k)] ) + [Ei:H‘l ('r'i"k B pi’k‘)} {Eizl Ui”k B pi"k')]
PRSP el - N g N :
ikl —pix)  Yon ikl —pik) i Pix(l—pik)
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Boosting for binary classification
IJCNN1 Test Errors

Robust LogitBoost and Adaptive Base Class (ABC) LoqitBoost, UAI 2010
2000

Test: J=20 v=0.1
This largely explains the
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2"d.order tree split formula for general loss functions

Gain(s) =SEiotal — (SEieft + SEright)

N s
:Z(~Z — 2)%w; — Z(: — Z1)%w; + Z 2 — ZR) u,vl-] ;
i=1

i=1 i=s+1

N s N
- . Z; Wy - . Z;W; - 2SN Z; W5 . -
where z = #, Zleft = Z—’?“—_l, Zright = # With some algebra, we can obtain
D ieq Wi D=1 Wi D i1 Wy

2 9

N - N -
T[S zw] [T
Gain(s) ====1 2 2 4 —

Plugging in z; = —L,/LY}, w; = LY yields,
/ N / 2
soop Bl Bl

Gain(s) = + - :
Yl XLl XL

General formula for any loss function with second derivatives: Lp regression boosting, ranking algorithms, etc.
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Lp boosting for regression
1 n 1 n 5
Ly = - ZLN = Z lyi — F;|P,  where F; = F(x;).
z=1 =11

OL,.;

OF; = —plyi — Fz‘|p_ISigﬂ (yi — F3)

82 Ly ,
QFZJ = p(p — 1)|y,l-, — F.,j|p_2. =2 if p = 2 (the usual L2 boosting)
1

. 2
s 2 ! I\’ ’}
Sl [, L] . [Zg 5+1L} B [2-321 L;
rain(s) = Zs T L” N I .
i=1 1 Zz s+1 Z@:l i
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Regression comparison results

Detailed comparisons: LR, RBF, GMM, pGMM, and L2-Boost https://arxiv.org/pdf/2207.08667.pdf

Table 1: Datasets for testing regression algorithms. We report the best test mean square erron

(MSE) for cach mecthod, over the range of regularization cocfficients and paramcters.

dataset 4 train  # test dim LR RBF GMM pGMM Ls-Boost
ENBcool 384 384 8 10.24 3.20 1.70 1.28 1.21
ENBheat 384 384 8 9.00 0.495 0.191 0.188 0.186
Airfoil 752 751 5 24.26 8.35 7.50 3.56 3.00
CPUsmall 4096 4096 12 102.12 9.05 7.09 7.05 6.89
CPU 4096 4096 21 98.35 6.42 5.17 5.03 4.69
WECPerth 5000 5000 32 1.1x10° 23x10® 24x10®° 23x10® 25x10®
Cadata 10320 10320 S AZ8X10? 38x10? 24%10° 4% 10?7 21%10°
Houscl6H 11392 11392 16 2.1x 102 13x10° 1.2x10° 1.1 x10° 1.0 x 10°
Housel6L 11392 11392 16 1.9x 107 1.1x 107 99x10°® 94 x 10® 8.6 x 108
CASP 22865 22865 9 26.63 23.94 15.30 15.29 13.51
Splice 1000 2175 60 0.1205 0.0967 0.0589 0.0589 0.0352
Mnoisel 2519 454 784 0.0484 0.0344 0.0311 0.0169 0.0145
Mnoise6 2519 454 784 0.0215 0.0165 0.0195 0.0129 0.0131
Mimage 2538 10524 784 0.0540 0.0323 0.0263 0.0125 0.0149 208
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Lp boosting

0.02
0.018 ¢

11 0.016 |
7))

= 0014}

0.012;

0.01
12345678 910
p

For some datasets, the difference between
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ABC-Boost for multi-class classification

ABC-Boost: Adaptive Base Class Boost for Multi-class Classification, ICML 2009

In textbooks, these are the first and second derivatives of logistic regression loss function:

OL;

ohy = kP g =Rk (1),

The ICML 2009 paper derived a new set of derivatives, by assuming class 0 is “base class”:

OL;

0F.,

2L,
OF

9?L;

(Fi0— Dio) — (Tik~Dix)

= pi,o(1 — pio) + pik(l — pik) + 2pi opi k-
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Training Loss Vs Boosting lterations

https://arxiv.org/pdf/1001.1020.pdf Figure 2
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Comparisons with GMM kernels, trees and deep nets

https://arxiv.org/pdf/1701.02046.pdf Six datasets created by CIFAR for deep learning study
https://arxiv.org/pdf/1805.02830.pdf

Error rate, lower the better
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Dataset Dataset
Min-Max (GMM) without tuning Boosted tree models can do much better

achieved similar accuracy as SVM
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Comparisons with GMM kernels, trees and deep nets

https://arxiv.org/pdf/1701.02046.pdf Six additional datasets created by CIFAR for deep learning study
https://arxiv.org/pdf/1805.02830.pdf

Error rate, lower the better
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Dataset

Tunable Min-Max Kernel can be

Tunable Min-Max Kernels do better
close to boosted tree models

than deep nets in most cases.
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A recent talk at Google: https://www.linkedin.com/feed/update/urn:li:activity:6965026431579951104/

[1] https://github.com/pltrees/abcboost , open source package
[2] http://statistics.rutgers.edu/home/pingli/STSCI6520/Lecture/ABC-LogitBoost.pdf , Lecture notes in 2012

[3] http://www.stat.rutgers.edu/home/pingli/doc/PingLiTutorial.pdf , Tutorial edited during 2012-2015

[4] McRank: Learning to Rank Using Multiple Classification and Gradient Boosting, NIPS 2007

[5] Adaptive Base Class Boost for Multi-class Classification, arXiv 2008 (worst-class search)

[6] ABC-Boost: Adaptive Base Class Boost for Multi-class Classification, ICML 2009 (exhaustive search)

[7] Robust LogitBoost and Adaptive Base Class (ABC) LogitBoost, UAI 2010 (second-order tree-split formula)
[8] Fast ABC-Boost for Multi-Class Classification, arXiv 2010

[9] An Empirical Evaluation of Four Algorithms for Multi-Class Classification, arXiv 2010

[10] pGMM Kernel Regression and Comparisons with Boosted Trees, arXiv 2022

[11] Classification Acceleration via Merging Decision Trees, FODS 2020

[12] East ABC-Boost: A Unified Framework for Selecting the Base Class in Multi-Class Classification, arXiv 2022
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https://arxiv.org/pdf/1006.5051.pdf
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https://arxiv.org/pdf/2205.10927.pdf
https://www.linkedin.com/feed/update/urn:li:activity:6965026431579951104/
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Vector similarity functions

Vector compressions

Vector similarity search
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Fast neural ranking

GPU computing

GCWSNet, hashing algorithms
Boosted trees, ABC-boost

Privacy

Security

Distributed, adaptive, and federated learning
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Privacy Has Become Increasingly Critical

https://www.whitehouse.gov/w
p-content/uploads/2023/03/Nati

onal-Strateqy-to-Advance-Priv

NA;IONAL S;MTEGY T0 ADVANCE acy-Preserving-Data-Sharing-a
RIVACY-PRESERVING DATA nd-Analvtics.pdf
SHARING AND ANALYTICS
A Report by the

FAST-TRACK ACTION COMMITTEE ON ADVANCING
PRIVACY-PRESERVING DATA SHARING AND ANALYTICS

NETWORKING AND INFORMATION TECHNOLOGY
RESEARCH AND DEVELOPMENT SUBCOMMITTEE

of the
NATIONAL SCIENCE AND TECHNOLOGY COUNCIL

March 2023
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Differential Privacy (DP) and Other Techniques

Table 1. Overview of Key Technical Approaches Essential for PPDSA.

Technique

Description

Value

Limitations

K-anonymity

Transforms a given set of k
records in such a way that in the
published version, each
individual is indistinguishable
from the others

Reduces the risk of re-
identification

Vulnerable to reidentification
attack if additional public
information is available

Differential
Privacy

Adds noise to the original data in
such a way that an adversary
cannot tell whether any
individual’s data was or was not
included in the original dataset

Provides formal
guarantee of privacy by
reducing the likelihood of
data reconstruction or
linkage attacks

Limited to simpler data types;
challenge in managing
tradeoff between privacy,
accuracy, or utility of data

Synthetic Data

Information that is artificially
manufactured as an alternative
to real-world data

Preserves the overall
properties or
characteristics of the
original dataset

May still disclose privacy-
sensitive information
contained in the original
dataset; difficult to mirror
real-world data

https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Strategy-to-Advance

-Privacy-Preserving-Data-Sharing-and-Analvytics.pdf
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Differential Privacy (DP) and Other Techniques

Use simple anonymization
by removing identifying data

Is re-identification
(de-anonymization)
a threat?

yes l—-l Make use of data portability

Is the query response
to an in-situ computation
potentially personally
identifiable?

Use differential privacy
(adding noise to the query result)

Use the plain in-situ approach |

This is a common misconception
about differential privacy (DP)

Figure 1. Tentative decision tree.

https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Strategy-to-Advance
-Privacy-Preserving-Data-Sharing-and-Analytics.pdf
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DP and Levels of Protections

https://arxiv.org/pdf/2303.00654.pdf

How to DP-fy ML: A Practical Guide to Machine Learning with
Differential Privacy

Natalia Ponomareva *!, Hussein Hazimeh'!, Alex Kurakin?, Zheng Xu?, Carson Denison?,
H. Brendan McMahan®, Sergei Vassilvitskii', Steve Chien?, and Abhradeep Thakurta®

'Google Research, NYC
2Google Research, MTV
3Google Research, Seattle

March 3, 2023

e Strong protection: € < 1

e Reasonable projection: € < 10

e No projection: € > 10 239
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Our Prior Works Related to Privacy

ICLR’23, Improved Convergence of Differential Private SGD with Gradient Clipping

ArXiv'23, Differential Privacy with Random Projections and Sign Random Projections

ArXiv'23, Differentially Private One Permutation Hashing and Bin-wise Consistent Weighted Sampling

ICML’'23, Regression with Label Permutation in Generalized Linear Model

ICML'23, One-Step Estimator for Permuted Sparse Recovery

KDD’23, OPORP: One Permutation + One Random Projection

SIGIR’23, Building K-Anonymous User Cohorts with Consecutive Consistent Weighted Sampling (CCWS)

ArXiv'22, k-Median Clustering via Metric Embedding: Towards Better Initialization with Differential Privacy

NeurlPS’22, Breaking the Linear Error Barrier in Differentially Private Graph Distance Release

IEEE CNS’'22, NL2GDPR: Automatically Develop GDPR Compliant Android Application from Natural Language

ISIT'22, Distances Release with Differential Privacy in Tree and Grid Graph

240


https://openreview.net/pdf?id=FRLswckPXQ5
https://arxiv.org/pdf/2306.01751.pdf
https://arxiv.org/pdf/2306.07674.pdf
https://proceedings.mlr.press/v202/fang23a/fang23a.pdf
https://proceedings.mlr.press/v202/zhang23t/zhang23t.pdf
https://pltrees.github.io/publication/KDD_2023_OPORP.pdf
https://arxiv.org/pdf/2304.13677.pdf
https://arxiv.org/pdf/2206.12895.pdf
https://arxiv.org/pdf/2204.14247.pdf
https://pltrees.github.io/publication/NL2App2022.pdf
https://arxiv.org/pdf/2204.12488.pdf

DP Algorithms Based on Random Projections

ArXiv 2023, Differential Privacy with Random Projections and Sign Random Projections

DP-RP: DP algorithm based on random projections (RP) with many variants
DP-OPORP: A variant of DP-RP Differential Privacy with Random Projections and Sign Random Projections

DP-SignOPORP: DP algorithm based on using signs of OPORP output

iIDP-SignRP: another interesting which only needs extremely small €, but it is not strict DP
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DP Algorithms Based on Permutations

ArXiv 2023, Differentially Private One Permutation Hashing
and Bin-wise Consistent Weighted Sampling

DP-BCWS: DP algorithm for bin-wise consistent weighted sampling
DP-OPH: DP algorithm for one permutation hashing

DP-MH: DP algorithm for minwise hashing (minhash)
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Intuitions behind These New DP Algorithms

Data are often in a vector format, i.e., data vectors in p-dimensions, where p does not have to be small.

The uses of data vectors are often through some "aggregated" form. For example, in similarity search, we often
use the "cosine" value (or other similarity measures) between vectors. When training machine learning models,
we essentially use their dot products, kernels, or more sophisticated aggregations.

We design randomized algorithms to "aggregate" data, and the resultant values can be further quantized.
Interestingly, even after these drastic data transformations, data similarities are still preserved in some form.

The aggregation and quantization operations can significantly facilitate privacy protection.

The randomizations (e.g., hash functions, permutations, random projections) for aggregation are assumed to
be known, for achieving stronger privacy protection in the real-world situation.

A series of novel ideas have paved the way for good DP algorithms (good utility with privacy guarantee).
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DP-RP Family of Algorithms: the Basic Idea

ArXiv 2023, Differential Privacy with Random Projections and Sign Random Projections

Instead of using the original data u in p-dimensions, we do rand projections to k dimensions.

. M= 1 S

X =—=WTu, WeRP*

Vi

The distribution of W can be Gaussian, very sparse with various parameters (s), uniform etc. We
recommend Rademacher, i.e., very sparse with s = 1, or OPORP, the variant of the count-sketch.

We can use the projected numbers x, to have algorithms called DP-RP (DP-OPORP), but it would be
better to use the signs, as the signs will only have a small probability to be changed if the original data u
is changed (according to differential privacy (DP) definition). This probabhility P+ can be as small as 0.05.
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Sign Flipping Probability of RP

We can use the projected numbers x, to have algorithms called DP-RP (DP-OPORP), but it would be
better to use the signs, as the signs will only have a small probability to be changed if the original data u
is changed (according to differential privacy (DP) definition). This probability P+ can be as small as 0.05.

0.7

1 s
-e~—(Gaussian|

ArXiv 2023, Differential Privacy gg il :_':”:””"‘ |
with Random Projections and 204 —s=3

Sign Random Projections Q0.3 =~ —
02¢ N\ﬁ%i
0.1} ]
. T 0 : ' : ’
P, = Pr (g i;]}a_tp|u',| > |w u) 10 200 400 600 800 1000

P
At this point, there are two ways to proceed:

1. Strict DP approach, it works very well, compared to existing DP algorithms.
2. Relaxed DP approach called “individual DP” (iDP). It works remarkably well.
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DP-RP and DP-OPORP

ArXiv 2023, Differential Privacy with Random Projections and Sign Random Projections

Algorithm 1: DP-RP-G and DP-RP-G-OPT

Input: Data u € [—1,1]P, privacy parameters ¢ > 0, § € (0, 1), number of projections k
Output: (e, d)-differentially private random projections ¥ € R

1
2
3 Apply RP z = Vl—EWTu, where W € RP** has iid entries sampled from N (0, 1)
4
5

Compute the sensitivity As by (8)
Generate the random noise vector G € R* whose entries are iid samples from N (0,0?)
where ¢ is obtained by Theorem 3.1 (DP-RP-G) or Theorem 3.5 (DP-RP-G-OPT)

6 Return z =2 + G
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DP-RP and DP-OPORP

ArXiv 2023, Differential Privacy with Random Projections and Sign Random Projections

90 'WEBSPAM: k =512

Compared to the adding DP to 9
the original data (green curve), — »
DP-RP and DP-OPORP o 80 o
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accuracy at the same privacy Q --—DP-OPORP
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DP-SignOPORP

ArXiv 2023, Differential Privacy with Random Projections and Sign Random Projections

Algorithm 8: DP-SignOPORP-RR and DP-SignOPORP-RR-smooth

1 Input: Data u € [—1,1]?; ¢ > 0; Number of projections k

2 Output: Differentially private sign OPORP

Apply Algorithm 4 with a random Rademacher projection vector to get the OPORP =z
DP-SignOPORP-RR:

sign(zj),  with prob.

w

N

e*l for4=1,....k

Compute s; =
? . —sign(z;), with prob.

€+1
DP-SignOPORP-RR-smooth:
5 Compute L; = [%LI] for 7 =1, ...,k
sign(xz;),  with prob. :i_ej
6 Compute §; = eI+l for j = 1,....k, with € = Lje
—sign(z;), with prob. —!
eJ+1

7 For §; = 0, assign a random coin in {—1,1}

8 Return s as the DP-SignOPORP of u 248
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DP-SignOPORP

ArXiv 2023, Differential Privacy with Random Projections and Sign Random Projections
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iDP-SignRP

ArXiv 2023, Differential Privacy with Random Projections and Sign Random Projections

If applications accept iDP
(individual DP), then
DP-SignRP can achieve
excellent accuracy even at
really small €. iDP is a
relaxed definition of DP.
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DP-BCWS

ArXiv 2023, Differentially Private One Permutation Hashing and Bin-wise Consistent
Weighted Sampling

NeurlPS 2019, Re-randomized Densification for One Permutation Hashing and Bin-wise
Consistent Weighted Sampling

Algorithm 8 Differential Private Bin-wise Consistent Weighted Sampling (DP-BCWS)

Input: Binary vector u € {0,1}”; number of hash values K; number of bits per hash b
Output: DP-BCWS hash values h(w), ..., h (u)
1. Generate length-D random vectors r ~ Gamma(2,1), ¢ ~ Gamma(2,1), B ~ Uniform(0,1)
2: Let d = D/K. Use a permutation 7 : [D] — [D] with fixed seed to randomly split [D] into K
equal-size bins By, ..., Bk, with By = {j € [D] : (k—1)d + 1 < n(j) < kd}
3: for k=1to K do
4: if Bin B, is non-empty then

55 hi(u) < CWS(upg,;rs,.cB,.085,) > Run CWS within each non-empty bin
6: hi(u) < last b bits of hi(u)
7 ) h(u), with probability #ﬁb_l
" blu) = i, with probability m, for i € {0,...,2° — 1}, i # hg(u)
8: else
9: hk(u) +— F
10: ﬁk(u) = ¢ with probability 2—1b, for i =0,..,2> —1 > Assign random bits to empty bin
11: end if 251

12: end for
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DP-BCWS

ArXiv 2023, Differentially Private One Permutation Hashing and Bin-wise Consistent

Weighted Sampling

NeurlPS 2019, Re-randomized Densification for One Permutation Hashing and Bin-wise

Consistent Weighted Sampling
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Figure 7: Test classification accuracy of DP-BCWS on MNIST dataset (LeCun, 1998) with 2-hidden

layer neural network.
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Fines for GDPR Incompliance

Following the introduction of GDPR in May 2018, initial reports showed that data

O
N

breach complaints increased by 160%. This rate is alarming and indicates just

)

how critical it is to ensure staff receive comprehensive GDPR training.

€

Google
| 'DEAR NSA:

X

¥
{
>
{

Top 20 GDPR fines so far

1. Amazon Europe - €746m fine (2021)
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3. Google Inc - €50m fine (2019)

il ek
> v )\ :

B
ac

o N

;
./

\ .,

W,
Yat

(D
Yol

G

4, H&M - €35.3m fine (2020)

Google continues to send data from EU websites to the B i’ e

US - despite two Court of Justice rulings. Austrian Data

. 5 4 it 6. British Airways - €22m fine (2020)
Protection Authority could fine Google up to €6 billion.

GDPR: Fines increased by 40% last year,
and they're about to get a lot bigger

Non-compliant businesses, beware: analysts say that
regulators are about to get much tougher with GDPR
enforcement.

https://www.skillcast.com/blog/20-biggest-gdpr-fines
https://www.zdnet.com/article/gdpr-fines-increased-by-40-last-year-and-theyre-about-to-get-a-lot-bigger/ 253
https://noyb.eu/en/austrian-dpa-has-option-fine-google-eu6-billion
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NL2GDPR: Automatically Develop GDPR Compliant
Android Application Features from Natural Language

System Architecture

e

Application Information GPR Policy MIT Generated

Descriptions Extractor Policy Finder Generator App Inventor APK
Policy Accuracy
Retention 89.6%
Consent 89.6% —

End-to-end Performance privacy Policy 87.5% e

Access 89.6%
Deletion 87.5%

CNS 2022 Sharing 91.7% Cutielite Ethacted

Security 91.7% Informa'%fi’gxnﬁtiolrixtract205r4
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Al Model Security

In addition to privacy, the Al model security has become increasingly important:
e FACT SHEET: Biden-Harris Administration Secures Voluntary Commitments from Leading
Artificial Intelligence Companies to Manage the Risks Posed by Al, link,
e The Blueprint for an Al Bill of Rights, link

Since 2019, we have worked on watermarking, integrity authentication, and backdoor attacks.

Original DNN Model Key Samples

oz
AR Key Sample
Generation —
R —
XA
>3] |

[

NaturalInputs

Normal Operation
Accuracy(\

7
"/

| + e *e e Model 1

1 s
e i i = Verification
[ Enroll Si Model 1| T, B s=s? @)
- [ Model N T S

Figure 1: Proposed DeepAuth mainly consists of key sample generation (Step 1) and signature embedding (Step 2). Enrollment

Clean Yellow Square

(Step 3) and authentication (Steps 4 and 3) are then performed based on the unique signature of each protected model. Prediction: STOP Prediction: GO 256
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Al Model Security

Since 2019, we have worked on watermarking, integrity authentication, and backdoor attacks.

The list of our prior works on Al model security:

AAAI 2023, Defending Backdoor Attacks on Vision Transformer via Patch Processing

NeurlPS 2022, Marksman Backdoor: Backdoor Attacks with Arbitrary Target Class

KDD 2022, Integrity Authentication in Tree Models

ICDE 2022, Identification for Deep Neural Network: Simply Adjusting Few Weights!

AAAI 2022, DeepAuth: A DNN Authentication Framework by Model-Unique and Fragile Signature Embedding
NeurlPS 2021, Backdoor Attack with Imperceptible Input and Latent Modification

ICCV 2021, LIRA: Learnable, Imperceptible and Robust Backdoor Attacks

ICCV 2021, Robust Watermarking for Deep Neural Networks via Bi-level Optimization
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Backdoor Attacks on Deep Neural Network (DNN)
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Training Data

4

Training the
Machine Learning

k Algorithm j

trigger

Input

Data

Backdoor Attack
influences the
model prediction
by modifying the
model’s behavior
during the
training process
with a backdoor.

lL .
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Trained Prediction
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Prediction: STOP Prediction: GO

This is a paramount security concern in the
model building supply chain, as the increasing
complexity of machine learning models has
promoted training outsourcing and machine

learning as a service (MLaa$).
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Prior Works: Fixed Trigger/Transformation Function

Original Patched Blended SIG ReFool WaNet
Limitation: The transformation function is predetermined

e Limits the attack visual stealthiness
e Results in lower attack success rates
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LIRA: Learnable, Imperceptible BackdooR Attack

Stage I: update both T and f Stage II: only update f

A — | /A\ ...... . ‘/A\ A

B

» parameter transfer — parameter update path ——— input TRAINING

LIRA’s learning process is separated in 2 stages.
ICCV 2021 e Stage |: both f and T are trained (trigger generation).
e Stage ll: only fis trained while T is fixed (backdoor injection). 260
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Original

Patched

Blended

ReFool

Images Patched , Blended , ReFool A WaNet = LIRA
Backdoor 8.7 1.4 2.3 38.6 60.8
Clean 6.1 10.1 13.1 17.4 40.0
Both 7.4 3:7 17 28.0 50.4

Human Inspection Tests - Each tester is trained to

recognize the triggered image. Success Fooling Rate (unable

to recognize the clean or poisoned images) is reported

WaNet

200x
Amplified
Residual

a8ew

Normalized
~Residual

|enpisay

Conclusions:

LIRA has significantly higher
success fooling rates.
LIRA's stealthiness causes
increasing confusion between the
testers.
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Input Space is Optimized, How About Latent Space?

Activations of the last hidden layer (penultimate) with 2-dimensional t-SNE projections. There exists a
clear separation between the poisoned and clean data of a predicted class. Activation Clustering detects
such separations and removes poisoned data, then re-trains the model.

Penultimat -

: » .. @lean - .
OO O] " b AR -“.';f'-l . TR
O Q O °. o - ® ‘. .".:‘ﬁac}k.dzoor

! . ,:,‘. ~
Benign Model All-to-One All-to-All

We observe such separations in the existing methods, including BadNets [Gu et al 2017], WaNet

[Nguyen et al 2021] & LIRA [Doan et al 2022]. 060



NeurlPS 2021 Wasserstein Backdoor:
Imperceptible Input And Latent Modification

e Solve the constrained optimization problem:

N Clean data objective __ triggered data objective

a,rgemin Z{aﬁ(fg(wi), yi)] +[ﬂ£ (fe (72-(9) (wz)) ’ "7(%))]

1=1

s.t. (1) ¢ = argmin i[ﬁ(fe(ﬁ(wz))y 77(%))] -|—[R¢(.7:c, ./Tb)]

§ i=1
(2) d(T'(z),z) < e

high attack minimize the
performance difference in the

latent space
>  The trigger function can be defined as:

Tﬁ(w) = —|—g§(:c), ||g§($)||oo <€ 263


https://proceedings.neurips.cc/paper/2021/file/9d99197e2ebf03fc388d09f1e94af89b-Paper.pdf

Learned Latent Space is Inseparable

ﬁackdoor

(a) All-to-one: LIRA (b) All-to-one: WB  (c) All-to-all: LIRA  (d) All-to-all: WB
MNIST: t-SNE embedding in the latent space.

< wagr,

4P,
Clean - . 5
e .
o (-‘ & ..o. .‘ . "ﬁ‘
.‘. = 2 o, £ ® & %
v . g S W
. o® : oo o 3 .
. . "- 2 % '-..“'::.t :
S Backdoor O 5 et
i 7 -
% :.' .‘- *

(a) All-to-one: LIRA (b) All-to-one: WB (c) All-to-all: LIRA  (d) All-to-all: WB
CIFAR10: t-SNE embedding in the latent space.
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NeurlPS 2022

Marksman Backdoor:

Backdoor Attacks with Arbitrary Target Class

The first work to extend single-payload attack to multi-trigger and multi-payload backdoor

with the capability of misclassifying an input to any target class.

All-to-One Attacks All-to-All Attacks

@; 30 mph speed

Attacks
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Watermarking

« Protect intellectual property (IP)

« Image, video, ..., Deep Neural Network (DNN)

0 Training DNN models can be very expensive

(Source:online)  peRT. 256 TPU-chip days  ~ $6,912
GPT-3: 355 Tesla-V100 years ~ $4,600,000
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Prior Methods for Watermarking

e Inserts to feature space (Uchida et al. & Rouhani et al.)
e Exploits adversarial example (Le Merrer et al.)
e Utilizes backdoor (Adi et al.)

Training data Owner Competitors

rely on end-to-end

automobile «
© s T @ Entad e retraining key samples

\ />

N\ © A, />
alrlane .. | (3] Ownership
verification

automobile airplane

Adi, Y.; Baum, C.; Cisse, M.; Pinkas, B.; and Keshet, J. 2018. Turning your weakness into a strength: Watermarking deep neural networks by backdooring. In Proceedings of
27th USENIX Security Symposium (USENIX Security), 1615-1631.

Uchida, Y.; Nagai, Y.; Sakazawa, S.; and Satoh, S. 2017. Embedding watermarks into deep neural networks. In Proceedings of the 2017 ACM on International Conference
on Multimedia Retrieval (ICMR), 269-277.

Darvish Rouhani, B.; Chen, H.; and Koushanfar, F. 2019. DeepSigns: an end-to-end watermarking framework for ownership protection of deep neural networks. In
Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 485-497.

Le Merrer, E.; Perez, P.; and Tr'edan, G. 2020. Adversarial frontier stitching for remote neural network watermarking. Neural Computing and Applications, 32(13):

9233-9244. 267



- 2Ozldentification for Deep Neural Network:
Simply Adjusting a Few Weights

e \Watermarking by only adjusting a few weights, and extend watermarking to identification
e Adopt the parameter searching concept from fault attacks

D.: selected key samples

Find highly
: unselected key samples

uncertain samples

I
>
>
m
2

Key
Samples

Select .
-
»

D :natural inputs

DNN Model i

|

=k
_TTT

Watermark (WM) 268

WMed Model



https://ieeexplore.ieee.org/document/9835648

Robust Watermarking for Deep Neural Networks

ICCV 2021

via Bi-level Optimization

= |nner phase: Optimizing the example-level problem to generate robust key samples;
= Quter phase: mask adaptive optimization to achieve robustness of the projected DNN models.

--------------------------

Training
Data D,

Feed

Model

1
Optimize |
1

Embedded
Model 0;

Initialize

Optimization

Inner Loop: Exemplar-level

Robust Exemplar

1
i Feed
i

Generate

mplars

1 ]
1 ]
1 1
| Outer Loop: Model-level |
Exe
Swm

Generation

Feed

Watermark
Data Dy,

Bi-level optimization schema

Watermark
Data Dwm

]

y

Initialize

Exemplars S,,,,

Feed

Base Model

0;

Initialize

y

Temporary

L

UpdateA

Watermark
Data D,,,,

Validate

Y

Model Gi’

Back-propagate and Adjust

Temporary
Model 0;,

Inner phase flow
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Robustness of Watermarking

Watermark is used for IP ownership verification. It should not be easily removed or overwritten.

Transformation Attacks: attempt to remove the watermark while retaining the accuracy of the
DNN model

e Fine-tuning
e Model-pruning

e \Watermark overwriting
Comparison to prior works on fidelity and

robustness against overwriting (20 key samples)

| Method | Accuracy | Robustess _

[Uchida et al.] ~0.3% 70~96%
[Rouhani et al.] ~0.5% 58%
[Adi et al.] ~0.3% 95%

Proposed ~0.05% 100%
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Types of Watermarking

Types Fragile Robust

Photo/Media

DNN

Application
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Integrity Authentication

= Machine learning as a service (MLaaS)

= The supply chain of models:
* multiple parties and vendors
* data, algorithm, and infrastructure are vulnerable to breach

= Maliciously altered models
* poisoning or backdoor attacks
* impair the integrity, reputation, and profit of the model owner

Users

] |2
Query modex/

'

P

t¢ N Cloud
&1 G

Deploy model T

]

Owner
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DeepAuth: A DNN Authentication Framework by
Model-Unique and Fragile Signature Embedding

Embed a fragile signature without affecting the performance AAAI 2022

Original DNN Model Key Samples

Key Sample
Generation —
>
Authentication
VectorT,
o Model X? Natural Inputs
Prediction 1
Results,
O —— Normal Operation
Trusted Server Accuracy
Model ID Auth Vector Signature e

T Sy <

: i i ‘ Verification
Enroll Signatures Model | Ti % EB Sy ==8;? @

P | Model N Tn Sn

Model 1
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https://ojs.aaai.org/index.php/AAAI/article/view/21193/20942

Integrity Authentication in Tree Models

KDD 2022

Boosted Tree Models

= Ensemble of decision trees

= Typically produce robust and fairly accurate results

= Interpretability

Challenges

= Deep learning integrity authentication methods require gradients

* tree models are indifferentiable

* appending more trees increases model size and hurts the inference performance

Iter 1

Iter 2

= Replacing a subset of existing trees is still an open research

* atreeis generated on the results of the previous trees

Class 1

Class 2

Class 3

Instance

Second class

2

3

1

An example for signature key selection
= Many deep learning signature embedding methods require retraining
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Outline

Vector similarity functions

Vector compressions

Vector similarity search

Maximum inner product search (MIPS)
Fast neural ranking

GPU computing

GCWSNet, hashing algorithms
Boosted trees, ABC-boost

Privacy

Security

Distributed, adaptive, and federated learning

Others: generative Al models, NLP, knowledge graphs, multi-modal, cross-modal, advertisieg



Distributed, Adaptive, or Federated Learning

ICML’'23, Analysis of Error Feedback in Federated Non-Convex Optimization with Biased Compression
JMLR’23, Sharper Analysis for Minibatch Stochastic Proximal Point Method: Stability, Smoothness, and Deviation
UAI'23, Fed-LAMB: Layer-wise and Dimension-wise Locally Adaptive Federated Learning

ICLR’23, Improved Convergence of Differential Private SGD with Gradient Clipping
ICLR’22, On Distributed Adaptive Optimization with Gradient Compression
NeurlPS’22, On Convergence of FedProx: Local Dissimilarity Invariant Bounds, Non-smoothness and Beyond

BIGDATA'22, Communication-Efficient TeraByte-Scale Model Training Framework for Online Advertising
ACML’22, On the Convergence of Decentralized Adaptive Gradient Methods

ACML’'21, An Optimistic Acceleration of AMSGrad for Nonconvex Optimization

FODS’20, Toward Communication Efficient Adaptive Gradient Method

JMLR’20, On Convergence of Distributed Approximate Newton Methods: Globalization, Sharper Bounds and
NeurlPS’20, Towards Better Generalization of Adaptive Gradient Methods

MLSys’20, Distributed Hierarchical GPU Parameter Server for Massive Scale Deep Learning Ads Systems
CIKM’19, AlBox: CTR Prediction Model Training on a Single Node
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Improve Generalization of Adaptive Gradient Methods

NeurlPS’20, Towards Better Generalization of Adaptive Gradient Methods

e Stochastic non-convex optimization. The empirical loss function:

min f(w) := E[f(w,&)] = ‘1ZE [f (w, &)]

weO

e Adaptive gradient methods (e.g, AdaGrad, Adam, AMSGrad) has been proven very
effective in many deep learning applications
o Fast convergence, better accuracy (e.g., especially for language models)
o Self-adapting learning rates, less need to tune

e Can we improve the generalization power of adaptive gradient methods?
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Improve Generalization of Adaptive Gradient Methods

NeurlPS’20, Towards Better Generalization of Adaptive Gradient Methods

e Idea: combining model training with differential privacy (DP)
o ldeal case: the model takes infinite many training samples
o Statistically, samples with DP perturbation can be viewed as fresh new
samples, when being re-used. Therefore, DP can help generalization.

Stable Adaptive Gradient Descent (SAGD)

Infinite samples SAGD
- il S -
”i ' ’_"/1/ iy Differentially
17'»__) 5 52 wa /;m. S 1

92
v = . ¢
g1

T Y . ~
| 1

Mechanism
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The SAGD Algorithm

NeurlPS’20, Towards Better Generalization of Adaptive Gradient Methods

SAGD + Laplace DP noise

Algorithm 1 SAGD with DGP-LAP

1: Input: Dataset S, certain loss £(-), initial point w, and noise level o.
2: Set noise level o, iteration number 7', and stepsize 7;.
3: fort=0,..,7—1do
4:  DPG-LAP: Compute full batch gradient on S
gt = % Z?:l Vﬂ(wt,zj).
Set §; = §; + by, where b} is drawn i.i.d from Lap(c) for all i € [d].
m; = g; and v; = (1 — f) Zi:1 Bz— gi-

W1 = Wy — nmy/ (/v +v).
end for

Gradient approximation guarantee with DP noise

Theorem 3 Given o > 0, let g1, ..., g be the gradients computed by DPG-SPARSE in SAGD.
With a budget no?/(2G%) < Cs < n20*/(6761n(1/(0B))G?), then fort € [T],3 > 0, u > 0:

P{lg — gl > Vio(1+ )} < dB +dexp(—) .
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Theory and Experiments

NeurlPS’20, Towards Better Generalization of Adaptive Gradient Methods

Convergence rate

SAGD performs worse on
training set, but the best on
test set (generalizes better)!

Theorem 5 Consider the mini-batch SAGD with DPG-LAP.
v > 0 m = n < v/(2L), noise level 0 =
m*/3/ (71,2/3169(1";)(111 d+ % Inn)), then:

t=1;..., 1

win, V7wl <0 (22U 2 T)) 4o

(mn)t/3

with probability at least 1 — O (1/(p,, an)).

Given S of size

1/(mn)'®, and epoch T =

(Il)i .(l
(mn)/3 )’

n, with

160 P 120 20
H —AdaBound —AdaBound —AdaBound
140 Adam >100/|\PTB: 3LSTM Adam 2. || SNLI: biLSTM Adam
'g 120 —RMSprop 'g —RMSprop 'g 15 —RMSprop
= —SGD S 80 —SGD s —SAGD
—SAGD —SAGD
Q100 % Q10
= = c
g % g g 5
F &0 [= [=
40 20 0
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
160 120 20
PTB: 2LSTM —AdaBound —AdaBound —AdaBound
5. 140 Adam > PTB: 3LSTM Adam > A —— Adam
= — = —RM £ :bi —RM
E’ 120 —gglgpmp E’ 100 _SGSPVOP E’ 15 —SAglgmp
[y [y a
o o o
é 80 k é 80 é 10
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Epoch
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Optimistic Acceleration for AMSGrad

ACML’21, An Optimistic Acceleration of AMSGrad for Nonconvex Optimization

OPT-AMS: use the optimistic prediction of the gradient in the next iterations to
accelerate the training process

Algorithm 2 OPT-AMSGRAD

1: Required: parameter 31, 32, €, and 7;.

2: Init: wy =w_1/2 € © CRYand v = €l € R4
3: fort =1to 7 do

Get mini-batch stochastic gradient g; at w;.
0; = B16i—1 + (1 — B1)g:.

ve = Bovi—1 + (1 — B2)g;.

’f)t = max(f)t_l, ’Ut).

Wiy = Wy — ﬂtj‘%—:-

Wiy = W1 — Ny %/35—71,

where ht+1 = Blet_l + (1 — ,Bl)mt+1 with
myy1 the guess of g4 1.

10: end for

Model parameter

,,@

me_q

D
@

Hidden eee—.

1
It+1

6—@
@

L
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Optimistic Acceleration for AMSGrad

ACML’21, An Optimistic Acceleration of AMSGrad for Nonconvex Optimization

Gradient prediction:
Solve a linear equation for a

linear combination of past
gradients

r =5 is a good choice

Algorithm 4 Regularized Approximated Minimal Polynomial Extrapolation (Scieur et al.,
2016)

1: Input: sequence {g, € R4}*=7~!, parameter A > 0.

2: Compute matrix U = [g; — go, - - -, gr — gr—1] € REX".
3;
4
5

Obtain z by solving (UTU + )z = 1.

: Getc= z/(le)
: Output: E’ —o Cigi, the approximation of the fixed point g*.

1

Train Loss = I CIFAR10+Res-18
—_AMSGrad e
@ 04§ — OPT-AMSGradr=3 || 9 O8] s
o ——OPT-AMSGrad r=5 o e
=103} ‘. N 106+ —OPT-AMSGrad r=5 |
g’ OPT-AMSGrad r=10 g’ OPT-AMSGrad r=10
€02 €04:
o1} — Foz2f
MNIST- Image + CNN = Train Loss
0 0 '
1 2 3 4 5 6 7 8 9 10 1 20 40 60 80 100
# Epochs # Epochs

Figure 3: Training loss w.r.t. 7.

282


https://proceedings.mlr.press/v157/wang21c/wang21c.pdf

Evaluation of OPT-AMS

ACML’21, An Optimistic Acceleration of AMSGrad for Nonconvex Optimization

Training loss: OPT-AMS has faster convergence speed
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Evaluation of OPT-AMS

ACML'21, An Optimistic Acceleration of AMSGrad for Nonconvex Optimization

Test accuracy: OPT-AMS achieve better generalization performance
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Communication Efficient Adaptive Gradient Method

FODS’20, Toward Communication Efficient Adaptive Gradient Method

we consider the following formulation for distributed training, with N works (nodes)

1 Y
mxin N Z fi()
i=1

where f; can be considered as the averaged loss over data at worker ¢ and the function can only be
accessed by the worker itself. For instance, for training neural nets, f; can be viewed as the average
loss of data located at the i-th node.
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Local SGD and Periodic Model Averaging

FODS’20, Toward Communication Efficient Adaptive Gradient Method

Algorithm 1 Local SGD (with N nodes)
Input: learning rate a, current point x;

gei & V fil®e3) +&5
if £ mod k # 0 then

Tt4+1,4 < Tti — OGiq
else

Teili < N Z;V:I (Tt — agrq)
end if

[ S I

el A A

Local SGD is heavily used for training neural nets in federated learning.

We consider adaptive gradient methods to improve over local SGD. 286
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Naive Local AMSGrad

FODS’20, Toward Communication Efficient Adaptive Gradient Method

Algorithm 2 Naive local AMSGrad (with N nodes)

—
S

Input: learning rate «, point x¢, mo; = 0,09; = €1, V1
gti < Vfi(xes) + &

me; = Prme—15+ (1 — B1)ges

v = Pavi—1:+ (1 — 52)922,2'

Up; = max(ve ;, 0s—1) Naive local
if ¢ mod k£ # 0 then AMSGrad fails to
mg¢ 4
Bpiig A — O converge
Vt,q
else
. L XV . mt
T+l S N ijl Tt.j — a\/m
end if

1. Each node runs AMSGrad locally.

2. The variables {z;;} , are averaged every k iterations.
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Local AMSGrad That Works

FODS’20, Toward Communication Efficient Adaptive Gradient Method

Algorithm 3 Local AMSGrad (with N nodes)

—_ =
- O

: Input: learning rate «, point x¢, m¢; = 0,00, = €1, V4
gti < vfz<rt,z) + gt,z

g ; = Prig—1.4 4 (L — B1)ge;
e = Bave—1, + (1 — B2) g7,
if ¢t mod k # 0 then

The key divergence mechanism is
due to different adaptive learning
rates on different nodes.

Up = Vg1
l$t+1ﬂ LI Rk We force different nodes to have
else

A | <N A the same adaptive learning rate
Oy = max(5 > imq Vi, Vi—1)

1 N . me j
Tt+1i € N Qj=1 (xt,y e m)

. end if
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Local AMSGrad That Works

FODS’20, Toward Communication Efficient Adaptive Gradient Method

Periodical Aggregation

Line9 & 10
Averaging Steps
x tmodk=0
t1 v t+1 xt 2 vt+1
xt“ . xt+1 2
Node 1 Node 2 .
V=V Uy =Dy } ‘ =Vy_q Local Steps

Update x; 4 Update x; , e L Updatex,y tmodk # 0

Figure 1: Illustration of the proposed local AMSGrad scheme (Algorithm 3) with shared adaptive

learning rate. The local servers employ AMSGrad updates locally, and the global server aggregates
the model parameters and second moment v every k steps.
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Experiments on Local AMSGrad

FODS’20, Toward Communication Efficient Adaptive Gradient Method

S - - 1
1008 1. Tae b o~ N B N WAV AL —
o 08 R T
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» 101 ] Q test accuracy
a 10 : ©
o train loss S506¢ 1
S, 5 3
= 10 ©
C L
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Figure 4: MNIST dataset: Performance comparison of three different algorithms. 290
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Decentralized Adaptive Gradient Methods

ACML’22, On the Convergence of Decentralized Adaptive Gradient Methods

e Communication cost has become a major concern in (centralized) distributed computing.
e Decentralized distributed computing can be highly beneficial in (e.g.,) mobile computing.
e |tis difficult to develop decentralized adaptive gradient methods that provebly converge.
e We propose a general algorithmic framework that can convert existing adaptive gradient

methods to their decentralized counterparts. We develop the generic decentralized
framework on prototype methods: AMSGrad and AdaGrad.
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DADAM Fails to Converge

ACML’22, On the Convergence of Decentralized Adaptive Gradient Methods

SRR L AT LGS IREE Proposed by Nazari et al. (2019),
I: Input: «, current point Xy, Ule = Y0i = el, the Decentralized ADAM (DADAM)

mo = 0 and mixing matrix W is a decentralized version of ADAM.

2. fort=1,2,---,T do It admits a non-standard regret
3:  foralli € [N] do in parallel Eound in the onlinehsetti{]hg.
% N () + & owever, we can show the
s gi’z. _ Bf;r(L t’z). +§tl’l_ B1)gs. convergence failure of DADAM in

' s L ! QQM the offline settings.
6: v = Bove—14 + (1 — B2)g;;
7: Ot = B30t + (1 — B3) max(Dy—1,, vt

N

8 Tipli = ijl Wija,j

. R mi 4
9: Titli = xt+%’i — o

10: end for 292
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Unified Decentralized Adaptive Gradient Framework
ACML’'22, On the Convergence of Decentralized Adaptive Gradient Methods

Algorithm 2 Decentralized Adaptive Gradient
Method (with N nodes)

1: Input: o, initial point x1; = T, U1, =
27

(2
0o,;, mo,; = 0, mixing matrix W

6U.D

2 fort=1,2,---,T do Theorem 2 Assume Al-A4. When o < 157, Algorithm 2 yields the following regret boun
3. forall i € [IV] do in parallel . 5
X 2

4: 9t < Vii(zei) + & %ZE vi(jit) <C (TL(E[f(Zl)] — min f(z)) + a%) + Co0*d
5 me; = Bime—1,; + (1 — B1)g, =1 7 < v
6: Oti = 1re(g1is 5 Gtia) T

- S W + C30%d + ——(Ca + Csa)E | (= Vhez + Vion)|
T xt+%7l = ijl 1]$t,‘7 3 T\/N 4 5 = t—2 t—1)|labs

~ N ~ —

8 Ui =) i Wijty_1
9: ut; = max (U, €)

, o My,
10: 'Eljt‘l—l,l - ait_}.%,i A_ a\/m/\
11: Upy 1= Ui — V-1, + Vg
12: end for

293


https://proceedings.mlr.press/v189/chen23b/chen23b.pdf

Decentralized AMSGrad and AdaGrad

ACML’22, On the Convergence of Decentralized Adaptive Gradient Methods

Algorithm 3 Decentralized AMSGrad (N nodes)

1: Input: learning rate «, initial point z1; =
ximt,u;’i = QAJ(),Z' =€l (Withé > 0),m0ﬂ' =
0, mixiég matrix W

2: fort=1,2,--- ,Tdo

3: foralli € [IV] do in parallel

4: gei < Vfi(res) + &

5 my; = Bimy—1,; + (1 — B1)9¢

6: ves = Povi—1:+ (1 — 52)9?71‘

7 ’lA)t’Z' = max(ﬁt_l,i, Utﬂ‘)

8

_ N o
T A Zj:l Wijxy

. T N .
9 Ut = Zj:l I/unt—%,j
10: ut; = max (U, €)
11: Tpalq =Ty, 1 ; — bl

: t+1,: beisd Vit
12: Upy = Uti — Vt—1, + Ut
13: end for

Algorithm 4 Decentralized AdaGrad (N nodes)

1:
2:
3
4:
5:
6
7

8:
9:
10:
11:
12;

Input: learning rate «, initial point x1; =
Tinit, U1 ; = o = €1 (withe > 0),mg; =
0, mixirig matrix W

fort=1,2,--- ,T do

for all i € [N] do in parallel
Gri — Vfilzes) + &
me; = Bime—1:+ (1 — B1) gt
% t—1 - 1.2
Vi = 3 Ut—14 + $9¢;
[R—— N .. .
Tipli = Ej:l Wijat
) _ N o~
Ut,s = Zj:l leut—%,j
ut; = max (il q, €)
Tpgls =Ty 1, — Ul
e = Mg T S
Uppl; = Usg — Up—1 + Vi
end for
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Compressed Distributed Adaptive Optimization

ICLR’22, On Distributed Adaptive Optimization with Gradient Compression

In distributed optimization (e.g., DSGD), transmitting the gradients between local nodes and
server could be costly and slow for large models. Gradient compression has been a popular
solution to resolve this issue.

Unbiased compressors:
e Stochastic quantization, e.g., QSGD (Alistarh et al., 2017)

e Stochastic sparsification
Biased compressors:

e Random-K, Top-K
e Fixed quantization, e.g., SignSGD
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COMP-AMS Algorithm

ICLR’22, On Distributed Adaptive Optimization with Gradient Compression

We focus on gradient compression with adaptive AMSGrad (Reddi et al. 2018)

Algorithm 2 Distributed CoMP-AMS with error feedback (EF)

I: Input: parameters /31, (3, ¢, learning rate 7, We consider biased compressors
2: Initialize: central server parameter ¢, € R4 C R4 ¢q,; = 0 the error accumulator for cach with Error Feedback (EF)

worker; mg = 0,109 = 0,79 =0

3:fori=1...; T do

4 panallelfor worker i'c [n] do: In each round, the local node:

5: Receive model parameter ¢, from central server .

6 Compute stochastic gradient g, ; at 6, 1. ComPUte and send stochastic

7 lCjozinpulci]lhc compressed gradient g, ; = C(gu,i +eri) gradient

8: pdate the error €41 = €1i + Gui — Qi

0: Send g, ; back to central server 2 Update local error tracker

10:  end parallel The server:

. ;e'l"f"ff'"egld,m 1. Aggregate the local gradients
: JL T g 1=1 74,1

13 my = Pymy—_1+ (1 - B)g 2. Perform AMSGrad update
14 v =PFov—1+(1— ,"32)gf
15: 0, = max(v;,0;—1)

16:  Update the global model #, 1 = 6, — 7/,\/%:'_:
17: end for 296
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Convergence Rates

ICLR’22, On Distributed Adaptive Optimization with Gradient Compression

Convergence rate for non-convex optimization

Theorem 1. Denote Cy = \/4(1*(1 G2 +¢ C = L + 24, 9* = argmin f(0) defined as

..)..
(/). Under Assumptions | to 4, withn, —n < 3Cov/2Ln

1—-5, 1—q*
€

ax{2L,Cy}’

, Algorithm 2 satisfies

1 2 L (E[f(0,) — f(6")] 1]L(7 37] LCyCio
—SNTE[IVFO)I] < 2(.:(
T; IV FOII] < 2Co Tn ne ne2
12n%q* LCoo? P (14 C1)G?d 3 n(1+ 2(;.'1)()11,('1‘2(1)
(1 — q2)2¢2 T+/€ Te '
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Convergence Rates

ICLR’22, On Distributed Adaptive Optimization with Gradient Compression

Linear speedup in number of nodes n

Corollary 2. Under the same setting as Theorem 1, set = min{ S — ,ﬁ }. The
3Co \/2[, max{2L,C,} VT

CoMP-AMS iterates admit

& 2 i) 2
1 i 5 1 o n(oc” + o)
= E[||Vf(6)|* <O + + 22). 2
7 BV £ O ot =) @

Single-machine rate matches the full-precision AMSGrad

Corollary 1. When n = 1, under Assumption | to Assumption 4, setting the stepsize as 1 —
1 I R, Ry N Y
min{ = }, Algorithm 2 satisfies

€
3Co+/2L max{2L,Cy}’
2
a

i 2 1 d
T;MWMMgaﬁ+ﬁﬁp.

Error feedback fixes the convergence issue of biased compression for AMSGrad!
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Experiments

ICLR’22, On Distributed Adaptive Optimization with Gradient Compression
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Figure 2: Train loss and Test accuracy vs. No. bits transmitted, on MNIST + CNN, CIFAR-10 +
LeNet and IMDB + LSTM with n = 16 local workers.

COMP-AMS matches full-precision training with 30 - 100x communication reduction
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Experiments

ICLR’22, On Distributed Adaptive Optimization with Gradient Compression
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Figure 3: The linear speedup of CoMP-AMS with varying n. Left: MNIST with Block-Sign
compressor on CNN. Right: CIFAR-10 with Top-£-0.01 compression on LeNet.

Validate the linear speedup property of convergence of COMP-AMS vs. # of local nodes
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Compression for Federated Learning

ICML’23, Analysis of Error Feedback in Federated Non-Convex Optimization with Biased Compression

Federated learning (FL) has been an important topic in ML and has seen many applications
in 5G/6G wireless communications, Internet of Things (loT), financial fraud detection, input
method editor (IME), advertising (ads), health records, ...

In this paper, we consider a standard
centralized FL system, with a global
server and many local clients (data silos,
mobile phones, 0T devices).

In each round, the clients train the models
locally, and send back the model updates
to the server for aggregation.

I

&

éié

Server coordinating
the training of a
global Al model

Devices with
local Al models
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Compression for Federated Learning

ICML’23, Analysis of Error Feedback in Federated Non-Convex Optimization with Biased Compression

Three key challenges in FL algorithm design, theory, and deployment:

1. Communication cost: Limited wireless bandwidth often cannot afford
transmitting full-precision large models.

2. Data heterogeneity: Local clients’ data are non-iid. Thus, the local training
loss (expectation over local data distribution) are different from the global
training loss.

3. Partial participation: In cross-device FL, clients may drop and join in each
round, thus partially participating in FL training.
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Compression for Federated Learning

ICML’23, Analysis of Error Feedback in Federated Non-Convex Optimization with Biased Compression

Error Feedback (Seide et al. 2014; Stich et al. 2018) has not been studied under the
practical FL setting, thoroughly.

e We focus on the Fed-EF framework and provide the analysis of EF with local steps,
data heterogeneity, and communication compression, to achieve a sharp
convergence rate compared with state-of-the-art FL methods.

e \We propose Fed-EF-AMS, the first adaptive (Adam-type) FL algorithm with
communication compression.

e We develop the analysis of EF under partial participation, showing an extra slow
down factor which is related to the client sampling ratio.

[1] Seide et al., 1-bit stochastic gradient descent and its application to data-parallel
distributed training of speech DNNs, INTERSPEECH 2014

[2] Stich et al., Sparsified SGD with memory, NeurlPS 2018
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Fed-EF Algorithm

ICML’23, Analysis of Error Feedback in Federated Non-Convex Optimization with Biased Compression

Fed-EF-SGD: The server performs SGD updates

Fed-EF-AMS: The server performs AMSGrad (Reddi
et al. 2019) updates

For distributed gradient compression with adaptive
optimizers, see Li et al. 2022.

[1] Reddi et al., On the convergence of Adam and
Beyond, ICLR 2019

[2] Li et al., On distributed adaptive optimization with
gradient compression, ICLR 2022

Algorithm 1 Fed-EF: Compressed FL with Error Feedback

1: Input: learning rates 7, 7;; parameters i, 32, €
2: Initialize: global model #; ¢ RY C R?; local error

accumulator ¢y ; = 0; mp = 0,v5 = 0,79 =0

3: fort=1,...,T do

4
5
6:
7
8

9:
10:
1 6 3
12:
13:
14:
15:

parallel for worker i € [n] do:
Receive global model 0, from server, set 05.11.) =0,
fork=1,..., K do

Compute stochastic gradient ‘h(kz) at ()Eﬁ)
(k)

Local update Gfﬁ“) = 0,(? — MYy
end for

Compute local update A, ; = 6,
Send E,, =C(A,; + e ;) to server

Update the error ey ; = ¢, + A, ; — Ay,
end parallel
Central server do: __

Global aggregation A, = L i Aii
Global update 0,1 = 6, — A, { Fed-EF-SGD }

s ()E‘Iiﬁ'+l)

my=pPimi_1+(1—B1)A, | Fed-EF-AMS )
=2
v = Povi—1 + (1 — B2)A,, 0 = max(v,, V1)

Global update 0[,+1 — 0[ 2 7]7%:

20: end for
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Convergence Analysis

ICML’23, Analysis of Error Feedback in Federated Non-Convex Optimization with Biased Compression

Contrastive compressor: ||C(x) — z||? < ¢?||z||* , n: # of clients m: # of active clients

e Fed-SGD with biased compression, without EF:  O( \}% +¢° - const)
e Fed-EF-SGD and Fed-EF-AMS (full participation):

Matches full-precision rates
O(JE) ° -

when q=0 (no compression)

e Fed-EF under partial client participation (uniform sampling assumption)

O(Lo Vn (1+¢* )\/_) The full-precision rate under PP is
vm  /Tm [Yang et al. ICLR’21]

N

An extra slow-down factor /m - delayed error compensation”

Partial participation introduces staleness to the local error accumulator. Updating with the

stale information slows down convergence.
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Convergence Analysis

ICML’23, Analysis of Error Feedback in Federated Non-Convex Optimization with Biased Compression

Table 1. Summary of theoretical convergence results from some existing works on distributed and federated learning with communication
compression for non-convex optimization. “PP” stands for “partial participation”, and “# of Rounds” is the number of communication
rounds required to achieve linear speedup, which is a common measure of the communication complexity of FL algorithms. 7" is the
number of communication rounds, K is the number of local steps, and = is the total number of clients.

Reference Local Step | Non-iid Data | PP | Adaptive Opt. | Compression | # of Rounds
Jiang and Agrawal (2018) ¢ v Unbiased T'=0(n)
Li et al. (2022b) v v Biased + EF T =0(n?)
Reisizadeh et al. (2020) v Unbiased <

Haddadpour et al. (2021) v v Unbiased T = O(Kn)
Basu et al. (2019) v Biased + EF | T = O(K*n")

Gao et al. (2021) v Biased + EF | T = O(Kn?*)
Fed-EF (our paper) © v v v v Biased + EF | T = O(Kn)

Our algorithm and analysis cover local steps, data heterogeneity, partial

participation and adaptive optimizer.
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Experiments

ICML’23, Analysis of Error Feedback in Federated Non-Convex Optimization with Biased Compression
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Fed-EF matches the performance of full-precision training with substantially
reduced communication cost (30 - 100x)
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Experiments

ICML’23, Analysis of Error Feedback in Federated Non-Convex Optimization with Biased Compression
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Multi-Modal and Cross-Modal Retrieval

Embeddings from cross-modal and multi-modal applications are increasing more common in
industry (e.g., text-image, text-video). We have accumulated rich experiences with
multi-modal/cross-modal training and retrieval, especially for search and advertising industry.

NAACL 2022, Cross-Linqgual Cross-Modal Consolidation for Effective Multilingual Video Corpus Moment Retrieval
SIGIR 2022, Cross-Probe BERT for Fast Cross-Modal Search

CIKM 2022, Multi-scale Multi-modal Dictionary BERT For Effective Text-image Retrieval in Multimedia Advertising
CIKM 2022, Texture BERT for Cross-modal Texture Image Retrieval

BIGDATA 2022, Tree-based Text-Vision BERT for Video Search in Baidu Video Advertising

ICTIR 2022, U-BERT for Fast and Scalable Text-Image Retrieval

NAACL 2021, Cross-lingual Cross-modal Pretraining for Multimodal Retrieval

EMNLP 2021, Inflate and Shrink: Enriching and Reducing Interactions for Fast Text-Image Retrieval

SIGIR 2021, Heterogeneous Attention Network for Effective and Efficient Cross-modal Retrieval

CIKM 2021, Assorted Attention Network for Cross-Lingual Language-to-Vision Retrieval

CIKM 2021, Multi-modal Dictionary BERT for Cross-modal Video Search in Baidu Advertising

CIKM 2021, MixBERT for Multi-modal Matching in Image Advertising

KDD 2020, Combo-Attention Network for Baidu Video Advertising 310
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Our Works on Generative Al Models

Likelihood-Based Generative Radiance Field with Latent Space Energy-Based Model for 3D-Aware Disentangled Image Representation,
AISTATS 2023. pdf

Cooplnit: Initializing Generative Adversarial Networks via Cooperative Learning, AAA/ 2023. pdf

A Tale of Two Latent Flows: Learning Latent Space Normalizing Flow with Short-run Langevin Flow for Approximate Inference, AAA/
2023. pdf

Learning Latent Structural Relations with Message Passing Prior, WACV 2023. pdf

A Tale of Two Flows: Cooperative Learning of Langevin Flow and Normalizing Flow Toward Energy-Based Model, ICLR 2022. pdf
Degenerate Swin to Win: Plain Window-based Transformer without Sophisticated Operations, Preprint 2022. pdf

Flow-based Perturbation for Cause-effect Inference, CIKM 2022. pdf

Variational Flow Graphical Model, KDD 2022. pdf

Causal Effect Prediction with Flow-based Inference, ICDM 2022. pdf

Learning Energy-Based Model with Variational Auto-Encoder as Amortized Sampler, AAAl 2021. pdf

Patchwise Generative ConvNet: Training Energy-Based Models from a Single Natural Image for Internal Learning, CVPR 2021. pdf
Learning Deep Latent Variable Models by Short-Run MCMC Inference with Optimal Transport Correction, CVPR 2021. pdf

Learning Energy-Based Generative Models via Coarse-to-Fine Expanding and Sampling, ICLR 2021. pdf

Learning Generative Vision Transformer with Energy-Based Latent Space for Saliency Prediction, NeurlPS 2021. pdf

Causal Discovery with Flow-based Conditional Density Estimation, ICDM 2021. pdf

Estimate the Implicit Likelihoods of GANs with Application to Anomaly Detection, WWW 2020. pdf

Meta-CoTGAN: A Meta Cooperative Training Paradigm for Improving Adversarial Text Generation, AAAI 2020. pdf

Multi-Agent Discussion Mechanism for Natural Language Generation, AAAI 2019. pdf

Graph to Graph: a Topology Aware Approach for Graph Structures Learning and Generation, AISTATS 2019. pdf

On Random Deep Weight-Tied Autoencoders: Exact Asymptotic Analysis, Phase Transitions, and Implications to Training, /CLR 2019311
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Our Works on NLP

A Semi-Autoregressive Graph Generative Model for Dependency Graph Parsing, ACL 2023 (Findings). pdf

Denoising Enhanced Distantly Supervised Ultrafine Entity Typing, ACL 2023 (Findings). pdf

Learning to Selectively Learn for Weakly Supervised Paraphrase Generation with Model-based Reinforcement Learning, NAACL 2022.
pdf

PromptGen: Automatically Generate Prompts using Generative Models, NAACL 2022 (Findings). pdf

Cross-Lingual Cross-Modal Consolidation for Effective Multilingual Video Corpus Moment Retrieval, NAACL 2022 (Findings). pdf
Cross-Probe BERT for Fast Cross-Modal Search, SIGIR 2022. pdf

Continual Learning for Natural Language Generations with Transformer Calibration, CoNLL 2022. pdf

Texture BERT for Cross-modal Texture Image Retrieval, CIKM 2022. pdf

U-BERT for Fast and Scalable Text-Image Retrieval, ICTIR 2022. pdf

Cross-lingual Language Model Pretraining for Retrieval, WWW 2021. pdf

Cross-lingual Cross-modal Pretraining for Multimodal Retrieval, NAACL 2021. pdf

Cross-Lingual Unsupervised Sentiment Classification with Multi-View Transfer Learning, ACL 2020. pdf

Inflate and Shrink: Enriching and Reducing Interactions for Fast Text-Image Retrieval, EMNLP 2021. pdf

A Deep Decomposable Model for Disentangling Syntax and Semantics in Sentence Representation, EMNLP 2021 (Findings). pdf
Hierarchical Multi-Task Word Embedding Learning for Synonym Prediction, KDD 2019. pdf

Coreference Aware Representation Learning for Neural Named Entity Recognition, IJCAI 2019. pdf

End-to-end Deep Reinforcement Learning Based Coreference Resolution, ACL 2019. pdf

Reinforced Product Metadata Selection for Helpfulness Assessment of Customer Reviews, EMNLP 2019. pdf
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Our Works on Ads, Search, Recommendation

Media report: A Look at Baidu’s Industrial-Scale GPU Training Architecture. link

EGM: Enhanced Graph-based Model for Large-scale Video Advertisement Search, KDD 2022. pdf
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Decomposing User-APP Graph into Subgraphs for Effective APP and User Embedding Learning. pdf
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Agile and Accurate CTR Prediction Model Training for Massive-Scale Online Advertising Systems, SIGMOD 2021. pdf
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TIRA in Baidu Image Advertising, ICDE 2021. pdf

Efficient Learning to Learn a Robust CTR Model for Web-scale Online Sponsored Search Advertising, CIKM 2021. pdf
Multi-modal Dictionary BERT for Cross-modal Video Search in Baidu Advertising, CIKM 2021. pdf

MixBERT for Multi-modal Matching in Image Advertising, CIKM 2021. pdf

Assorted Attention Network for Cross-Lingual Language-to-Vision Retrieval, CIKM 2021. pdf

Combo-Attention Network for Baidu Video Advertising, KDD 2020. pdf

Video Recommendation with Multi-gate Mixture of Experts Soft Actor Critic, SIGIR 2020. pdf

Distributed Hierarchical GPU Parameter Server for Massive Scale Deep Learning Ads Systems, MLSys 2020. pdf
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Example projects in collaboration with ads teams

“Phoenix Nest” is the legacy name of Baidu (search) Ads
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Example projects in collaboration with ads teams
TIRA in Baidu Image Advertising
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Examples of non-ads product projects

Fastlnput: Improving Input Efficiency on Mobile Devices

Jingyuan Zhang, Xin Wang, Yue Feng, Mingming Sun and Ping Li

Cognitive Computing Lab
Baidu Research
10900 NE 8th St. Bellevue, Washington 98004, USA
No.10 Xibeiwang East Road, Beijing 100193, China

CIKM 2018, Chinese Language Input Method Editor

{zhangjingyuan03, wangxin60, fengyue04, sunmingming01, liping11}@baidu.com
Improved Touch-screen Inputting Using Sequence-level
Prediction Generation

Deployed boosted tree models on cell phones

WWW 2020
International Langue Input Method Editor

Xin Wang, Xu Li, Jinxing Yu, Mingming Sun, Ping Li

Cognitive Computing Lab
Baidu Research
No.10 Xibeiwang East Road, Beijing, China
10900 NE 8th St. Bellevue, WA 98004, USA
{wangxiné60,lixu13,yujinxing,sunmingming01 liping11}@baidu.com

ABSTRACT

Recent years have witnessed the continuing growth of people’s de-
pendence on touchscreen devices. As a result, input speed with the
onscreen keyboard has become crucial to communication efficiency
and user experience. In this work, we formally discuss the general
problem of input expectation prediction with a touch-screen input
method editor (IME). Taken input efficiency as the optimization
target, we proposed a neural end-to-end candidates generation solu-
tion to handle automatic correction, reordering, insertion, deletion
as well as completion. Evaluation metrics are also discussed base on
real use scenarios. For a more thorough comparison, we also pro-
vide a statistical strategy for mapping touch coordinate sequences
to text input candidates. The proposed model and baselines are

ge! good
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The first touch The second touch

Figure 1: An illustration of the input process and the corre-
sponding candidate lists. The first touch falls into the area
of ‘g’, so the candidate list shows high-probability words be-
ginning with ‘g’. Then the second touch falls on the board
of ‘i’ which is close to ‘0’, so the candidate list containGbpEh
possible strings ‘gi’ and ‘go’.



Can LLM Fully Replace Knowledge Graph (KG)?

Possibly!
At least at this point, knowledge graphs (KGs) are still very useful in industrial practice.

KGs can also be the extremely useful tools for improving LLMs. That is, in addition to
retrieval-augmented generation, we can also resort to KG-augmented generation.

Knowledge graph embedding (KGE) is a major source of embedding data.
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Our Works on Knowledge Graphs

ACL 2023, Denoising Enhanced Distantly Supervised Ultrafine Entity Typin

ACL 2022, OIE@OIA: an Adaptable and Efficient Open Information Extraction Framework

SIGIR 2022, End-to-end Distantly Supervised Information Extraction with Retrieval Augmentation

HT 2022, Knowledge Graph Embedding by Relational Linear Transformation in the Entity Space

SDM 2022, Explainable Concept Graph Completion by Bridging Open-Domain Relations and Concepts
WWW 2021, MQuadE: a Unified Model for Knowledge Fact Embedding

SIGIR 2021, ReadsRE: Retrieval-Augmented Distantly Supervised Relation Extraction
WWW 2020, Extracting Knowledge from Web Text with Monte Carlo Tree Search

EMNLP 2020, A Predicate-Function-Argument Annotation of Natural Language for Open-Domain Information eXpression
ACL 2020, Learning Interpretable Relationships between Entities, Relations and Concepts via Bayesian Structure
Learning on Open Domain Facts

SDM 2020, An Advantage Actor-Critic Algorithm with Confidence Exploration forOpen Information Extraction

NAACL 2019, Integration of Knowledge Graph Embedding into Topic Modeling with Hierarchical Dirichlet Process

WSDM 2019, Knowledge Graph Embedding Based Question Answering

EMNLP 2018, Logician and Orator: Learning from the Duality between Language and Knowledge in Open Domain

WSDM 2018, Logician: A Unified End-to-End Neural Approach for Open-Domain Information Extraction
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Knowledge Graph Embedding (KGE) Based QA

WSDM 2019, Knowledge Graph Embedding Based Question Answering
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Figure 1: Instead of inferring the head entity and predicate directly, KEQA targets at jointly recovering the question’s head
entity, predicate, and tail entity representations (&, p, é;) in the knowledge graph embedding spaces.
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Knowledge Graph Embedding (KGE) Based QA

WSDM 2019, Knowledge Graph Embedding Based Question Answering
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Figure 2: The architecture of the proposed predicate and
head entity learning models.
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Knowledge Graph Embedding (KGE) Based QA

WSDM 2019, Knowledge Graph Embedding Based Question Answering

Algorithm 1: The proposed KEQA framework

Input: G, predicates’ and entities’ names, P, E, Q, a new
simple question Q.

Output: head entity h* and predicate *.

/* Training the predicate learning model: */
1 for Q; inQ do
2 Take the L tokens of Q; as the input and its predicate ¢ as
the label to train, as shown in Figure 2;
3 Update weight matrices {W}, w, {b}, and bg to minimize
i

the objective function ||p, — % 214:1 r; 12

/* Training the head entity learning model: */

4 for Q; in@Q do

5 Take the L tokens of Q; as the input and its head entity h
as the label to train, as shown in Figure 2;

6 Update weight matrices and bias terms to minimize the

objective function ||ej, — % Z,L-zl r;.rllz:

/* Training the HED model: */

7 for Q; inQ do

Take the L tokens of Q; as the input and its head entity
name positions as the label to train;

9 Update weight matrices and bias as shown in Figure 3;

/* Question answering processes: */
10 Input Q into the predicate learning model to learn pg;
11 Input Q into the head entity learning model to learn éj,;
12 Input Q into the HED model to learn HED¢pjty and HEDyop;
13 Find the candidate fact set C from G, based on HEDentity:
14 For all facts in C, calculate the fact (h*, (*, t*) that minimizes

the objective function in Eq. (9).

Table 3: Performance of all methods on SimpleQuestions.

FB2M (Accuracy)

FB5M

Bordes et al. (2015) [6]
Dai et al.® (2016) [10]
Yin et al. (2016) [46]

Golub and He (2016) [18]
Bao et al. (2016) 2]
Lukovnikov et al. (2017) [27]
Mohammed et al.>(2018) [29]
KEQA_noEmbed
KEQA

0.627 0.639
N.A. 0.626
0.683 (+8.9%) 0.672
0.709 (+13.1%) 0.703

0.728 (+16.1%) Entire Freebase

0.712 (+13.6%) N.A.
0.732 (+16.7%) N.A.
0.731 (+16.6%) 0.726
0.754 (+20.3%) 0.749
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Knowledge Graph Embedding (KGE)

Knowledge graphs organize general human world knowledge in a graph structure.
The nodes in the knowledge graphs represent the entities, and the edges
represent the relations between them.

Knowledge graphs can provide background knowledge to enhance the application
of machine learning methods in many areas, including search engines, natural

language processing, recommendation systems,
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actedin \\\’\iirm’el"/// " * 93 o
One way to populate the knowledge graphs is T o male
( ) Person P
. . . . - - The Clock actedIn / Keenan \\\‘
to predict the missing facts by reasoning Movie.TV <1945_ﬂ'm>\‘ Wy
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with the existing facts. (e )

Figure 1: Part of the knowledge graph in Yago3-10 dataset.
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Knowledge Graph Embedding (KGE)
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Figure 1: Part of the knowledge graph in Yago3-10 dataset.
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Knowledge Graph Embedding (KGE)

KGE have been developed in recent years for link prediction and triple classification tasks.
KGE has gained popularity owing to their simplicity, effectiveness, and scalability.
In general, they embed entities and relations into low-dimensional continuous
representations and model the plausibility of a fact triple (h, r, t) through a score function f (h,
r, 1).
To honestly reflect the logic of the knowledge base, the embedding methods should be able
to model the various relation properties. For example,

symmetry — spouse,

inversion — hypernym, hyponym;

composition — mother’s husband is father;

non-injective — one’s children.
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MQuadE: Unified Model for Knowledge Fact Embedding

Our solution: embed entity and relation by a symmetric matrix and a pair of matrices, resp.

Key: Singular matrices are used to model the non-injective relation.

Table 2: The abilities to infer the relation properties of several methods.

WWW 2021

Model Symmetry gif(:::letry Inversion Abeliizml;);:-lz:elian Non-injective
DistMult [34] v X X X X X
Bilinear ComplexIEx [28] v v v X X X
Semantic Matching PiEdiid | A2] v v v v ¥ ol
QuatE [35] v v v X X X
SEEK [33] Z Vs / X X X
Tensor Decomposition TucHER[3] V4 V4 V4 X X Ve
Deep Learning ConvE [6] ? ? ? ? ? ?
TransE [5] X v v v X X
Translation Distance RSEIE}I;E[ 5:]1] ; ; ; ; § j:
MQuadE(ours) v v v v v v
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MQuadE: Unified Model for Knowledge Fact Embedding

WWW 2021, MQuadE: a Unified Model for Knowledge Fact Embedding

Table 8: Results of link prediction on the DB100K dataset. Table 10: Triple classification results on the Yago3-TC bench-
mark hidden test set.

Metrics
Models Hits@N

MRR MR — 3 10 Recall Precision AUC

g—
TransE [5] 0.111 - Lobte——046+— 270 86.6 11.6 0.61
DistMult [34] | 0.233 - 0.115 0301 0.448 83.7 10.9 0.58

ComplexIEx [28] | 0.242 - 0126 0312 0.440 ' ' '

SEEK [33] 0338 - 0268 0370 0.467 20.3 144 0.64
MQuadE 0402 1711 0318 0.451 0.546 32.2 28.5 0.68
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Knowledge Graph

e Knowledge Graphs are isolated small islands which can not talk to each other;

e But human brain contains a large general knowledge graph which is used for each aspect

of life and can increase for new problem domain.
e How can this happen?

e \We can do this if we can express knowledge in various domains using natural language.

327



Open Information Extraction (OIE)

e People generally regard OIE as methods to extract <s, p, 0> tuples from natural text;

e However, we believe OIE is essentially about how to expressing knowledge using natural
language phrases:

o Theoretically, what kind of information in language can be formulated as knowledge;

o Practically, how to express the complex language phenomenon into form of language;
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wsomzo1s | ogician: Our First Attempt on OIE

e \We proposed the SAOKE (Symbol Aided Open Knowledge Expression):
o Formulate four types of knowledge in natural language: relations, attribute, description, concepts;

o Express these knowledge with an auxiliary symbol system for accuracy and completeness;

| | Chinese | English Translation

Sentence Z=H(7015F —7625F), Rz =+ AR, 3REARTT, Li Bai (701 - 762), with masterpieces of famous poetries such as
FER, BXK, REFEE (BFILEM) %%F | "Watching the Lushan Waterfall", was deeply influenced by Zhuangzi’s
IRFRK o thought, hearty and generous, loved to drink and write poetry, and liked

to make friends.

Relations (ZH, X200, EF B8 (Li Bai, deeply influenced by, Zhuangzi’s thought)
&8, &, [’ﬁ@ﬁ"ﬁﬁ‘r]) (ZFEH, E,XKR) (Li Bai, loved to, [drink| write poetry]) (Li Bai, liked to, make friends)

Attribute (¥H, BIRTH, 701%F) (%*H, DEATH, 7625F) (Li Bai, BIRTH, 701)(Li Bai, DEATH, 762)
&8, KERE, (EFLEm) ) (Li Bai, masterpiece, "Watching the Lushan Waterfall")

Description | (2*H, DESC, 3RBEHAXJ7) (Li Bai, DESC, hearty and generous)

Concept ( CEJFILIET) | ISA, Z A 151K) ("Watching the Lushan Waterfall", ISA, famous poetry)

e The first End-to-End Neural Pipeline for OIE (WSDM 2018);

e However, SAOKE can only express part of knowledge in natural sentences. 329
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Duality between Language and Knowledge

Va(Fi)

e \We proposed the task of Open-Domain Information roy

Yy
Narration (OIN) as the reverse task of Open Information @ Logician ;
Extraction (OIE); s RolSFD) oo*

o OIE : Sentence [ Knowledge, by Logician; ' 50(S;,S) Se(F, Fi)

- -

o OIN: Knowledge [ Sentence, by Orator; ,,/"RS(]:, SJ')\\\
< F
e The first work to investigate the duality between language @ Orator @
and knowledge in open domain (EMNLP 2018)
Vo (S;))

Figure 1: Illustration of the dual learning system of Lo-
gician and Orator. 330
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Open Information An

e OIA: Open Information Annotation (EMNLP 2020) :

o Formulate a whole sentence into a

Predicate-Function-Argument structure;

o All information in sentence can be expressed as

knowledge in the form of Predicates and Functions;

e OlA is yet another annotation on natural language, but:
o Is not build for linguistics but for knowledge in Al;
o Directly support downstream tasks, such as OIE;

o A language annotation for Al.

notation (OIlA)

Parataxis

ﬂad.arg.l\gred.argl

drafted not sure

pred.arg.1 p red.aerrcd arg.1
-
red.arg.2 s:pred.arg.1
A
a series of calls close to pred.arg 2 what

as:pred.arg.1 as:pred.arg 2

this anything

A
tied to had

pred.arg 2 md.argkis:prcd.arg.l
A
the MOPA delivery term and quantity @ in

pred.arg.2
4

mind

(b) Case II — I drafted the Into TVA Option as a series of calls
tied to the MOPA delivery term and quantity - not sure if this
anything close to what you all had in mind. 331
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Building the OIA System

ACL 2022, OIE@OIA: an Adaptable and Efficient Open Information Extraction Framework

® The OIA Parser: Sentence [ OIA Graph

® OIE@OIA: OIA as a general intermediate layer for multiple OIE systems;

Systems OIE2016 Re-OIE2016  CaRB
' - AUC F1 AUC Fl1 AUC FI
[Sentence Adaptor@ | Facts@ Stanford (Angeli et al., 2015) 79 136 115 167 134 230
OIE 2016 1" OIE 2016 2 OLLIE (Mausam et al., 2012) 202 386 313 495 224 411
- & NestE (Bhutani et al., 2016) 37.7 438 321 422 194 311
. o PropS (Stanovsky and Dagan, 2016) 32.0 544 433 642 126 319
OIA Adaptor@ [Facts@ £ MinlE (Gashteovski et al., 2017) 350 410 455 478 281 413
Geraratl Re-OIE 2016 > Re-OIE 2016 ClausIE (Corro and Gemulla, 2013) 364 58.0 464 642 224 449
) — OIE@RuleOIA 373 546 633 750 324 456
) 2 OpenlIE4 (Christensen et al., 2011) 40.8 588 509 683 272 488
- 2 BIO (Zhan and Zhao, 2020) 462 686 719 803 277 466
Adaptor@ »| facts@ R SpanOIE (Zhan and Zhao, 2020) 489 687 658 710 300 494
CaRB ] L CaRB £ BiLSTM +BERT (Roetal., 2020) - - 721 813 306 506
g Multi2OIE (BERT) (Ro et al,, 2020) - - 746 839 326 523
S “OIE@OIA (BERT) 543 71.6 769 853 339 511
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Next Step: How to Organize the Knowledge

e Traditional symbolic KG organize knowledge
by schema, a system that defines the

connection between concepts and relations;

e However, in open domain, the concepts and

relations are not connected.

e \We build connection between concepts and
relations in open domain through Bayesian
Network Structure Learning (ACL 2020) and
Neural Nets (SDM 2022).

Subject-Relation View  Object-Relation View Structure Learning

Ty T2

et - cq %.
€1 C ¢C3

af i (6771,01)\.
A

& °
€y (e,m2,02)7C1

|

Figure 1: The workflow of learning interpretable relationships from open domain facts for concept discovery.
fi = (84,7, 0;) represents a fact, where s; and o; are both entities, and r; is a relation. We use e; to denote an
entity and c; to represent a concept.

SDM 2022

Concept graph 1. Concept many-shot representation
using concept phrase
L1

® o Choose query
 adl concept e.g. school, company g
[ 3 . . N OR "
L [ S r 2. Concept few-shot representation | y
o * . using support set

et {1,113, -
Facts o = i} Matcher .| Matching
Mask \—/ score
Open domain text fit Gumpo) as
Open IE S ;
s
Figure 1: The workflow of learning the relationships from open-domain facts for concept discovery.
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Next Step: How to Organize the Knowledge

ACL 2020, Learning Interpretable Relationships between Entities, Relations and Concepts via
Bayesian Structure Learning on Open Domain Facts

Bayesian Network
Subject-Relation View Object-Relation View Structure Learning

kacts Jis (31,7‘1,01) LT

:

/'fl : (6,7‘1, 01)\
A [4]

€™ fo: (e,72,02)  C1

fn : (3n7rn1 on)

Il \

Texts

Concept Graph | ¢ m% Cq

Concept Discovery

Entity-Concept View

Figure 1: The workflow of learning interpretable relationships from open domain facts for concept discovery.
fi = (si,ri,0;) represents a fact, where s; and o; are both entities, and r; is a relation. We use e; to denote an
entity and c; to represent a concept. 334
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Next Step: How to Organize the Knowledge

SDM 2022, Explainable Concept Graph Completion by Bridging Open-Domain Relations and Concepts

Concept graph

_.‘.ﬁ
/ @

e @" . &)
® © ® )

@
. J

Open domain text

Open IE

Choose query
concept
: e o

Facts

fi: (51,11,01)

fn: (Sn,Ths On)

~—

aggregation
: N

OR

1. Concept many-shot representation
using concept phrase

2. Concept few-shot representation
using support set

€s {rl'rZ»r3' kbl TL}

Mask

T
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Figure 1: The workflow of learning the relationships from open-domain facts for concept discovery.
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Summary

Many data types in machine learning and Al can be viewed as “vectors”.

Vectorized data computing (VDC) is crucial for machine learning and is also much
beyond machine learning. It may grow into its own discipline in the near future.

Vector databases can be viewed as one component in vectorized data computing.

In most applications, results from vector databases (such as similarity search) are
quite crude and can serve as the initial screening step (e.g., ads candidate
retrieval). Al and machine learning models are necessary for accurate predictions.

Keys in big models: 1) accuracy 2) training/serving efficiency 3) distributed training.
For example, training trillion-parameter models for high-accuracy recommender
systems.. Many novel algorithms and infrastructure systems are presented.

Privacy and Al model security have become increasingly critical in Al. -



Updated Version Available

https://pltrees.qithub.io/publication/VecDataComp.pdf
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