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Summary
● Many data types in machine learning and AI can be viewed as “vectors”. 

● Vectorized data computing (VDC) is crucial for machine learning and is also much 
beyond machine learning. It may grow into its own discipline in the near future.

● Vector databases can be viewed as one component in vectorized data computing.

● In most applications, results from vector databases (such as similarity search) are 
quite crude and can serve as the initial screening step (e.g., ads candidate 
retrieval). AI and machine learning models are necessary for accurate predictions. 

● Keys in big models: 1) accuracy 2) training/serving efficiency 3) distributed training. 
For example, training trillion-parameter models for high-accuracy recommender 
systems.. Many novel algorithms and infrastructure systems are presented.

● Privacy and AI model security have become increasingly critical in AI. 
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Embeddings (Vectors): Memory for AI and LLM

Tasks involving embeddings:  fine-tuning models, compact storage, similarity search, 
weighted similarity search using MIPS (maximum inner product search), fast neural ranking, 
downstream learning models, privacy protection, and prompt engineering, etc.

prompt

prompt

1024~12288 dimensions

generated answers

2046~8191 tokens (words)

Chat:

Embedding:
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Major Use Examples of Vectorized Data
● LLM (large language models) training: A few major players and many startups. 

● Retrieval-augmented generation (RAG) for LLM models: 
○ More cost-effective than fine-tuning. Reducing hallucinations. Vector DB is a key.

● LLM/AIGC applications: 
○ Vector database (DB) is crucial for applications of LLM/AIGC. 

● Recommender systems (in the broad sense):
○ Search, advertising (ads), feed, recommendation. 
○ Major revenue generators of AI

● Other traditional uses of vectorized data: 
○ Machine learning models: risk, fraud, trust, security
○ Knowledge-graph embeddings (KGE), e.g., for question-answering (QA)
○ Vectors generated from raw texts without training, e.g., n-grams, shingles. 
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Introduction to Typical Vector Database (DB)

item 1

item n

user

... ...
insert

Vector DB

query

user item i

similarity score (e.g., cosine)

return

k similar item vectorsWill be re-ranked with an AI model (neural 
network) for final recommendation 6



The Role of Vector DBs in Search and Ads
1. Embeddings have become the crucial component in search and ads. 

2. Embedding-based retrieval (EBR) is the key step for retrieval. 

3. EBR, ANN, Vector DBs etc provide only very crude results, and hence they can only serve as 
an important intermediate step in the pipeline of ads, search, and recommendation.

4. AI models for generating embeddings and models for prediction/rankings are crucial.   
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● Amazon movie review: LLM + embedding + AI models :

○ 11,000 movie reviews (raw texts) => LLM => 11,000  embeddings in 384 dimensions.
○ 1,000 embeddings as test (query) vectors , 10,000 base vectors. 
○ HNSW and KNN classifiers to predict review ratings (1-5) => 60% accuracy.
○ ABC-Boost trees with 10,000 base vectors for training = > 70% accuracy.
○ MLP neural networks => 70% accuracy.
○ MLP neural networks + DCNV2 (deep feature crossing) => 71%.
○ MLP neural networks + BFI (8-block blockwise feature interactions) => 71%.

A Simple Demo

Only using embeddings and their similarities is typically not sufficient. Many applications 
will  need to build AI models on top of the embeddings from LLM or other methods. 
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Vector Databases for Improving LLM

Vector databases can also be used for improving LLM. A few examples are: 

● History Memory LLM
○ Contextual Memory: By storing contextually relevant information in vector databases, 

the language model can access and recall it at a later time

● ANN and MIPS for LLM
○ Next word prediction as an MIPS when number of tokens is large

● Multi-Modal Integration in LLM
○ LLM leverage vector databases to store and retrieve multi-modal embeddings. This 

enables the LLM to associate relevant information across different modalities
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prompt 1 answer 1
Long-Term History 

Memorization

prompt 2prompt 1 answer 2answer 1

prompt 2prompt 1

answer 3

answer 1

answer 2 prompt 3

Too many tokens to be handled

History Memory LLM
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prompt 1

answer 1

prompt 2

answer 2

prompt 3
Find related 
ones in history

History embeddings

History Memory LLM

prompt 1

answer 1

prompt 1 answer 1 prompt 3 answer 3
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History Memory LLM Use Cases

● Customer Support
○ Understand continuous customer queries and provide relevant responses

● Data Analysis
○ Process vast amounts of data to assist in extracting valuable insights

● Domain-Specific Language Models, e.g., legal
○ Analyze long legal contracts, and regulations and assist in drafting legal documents
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ANN and MIPS in LLM

● Having more tokens (i.e., bigger vocabulary size) can improve the performance of LLM

● Creating more token generates fewer hallucination

● Having too many tokens make the training/inference of the last layer in the LLM slow
○ It becomes an MIPS (max inner product search) task

● Having a lot of tokens also means the token embedding layer super large

● This may require highly efficient ANN search to make the training and inference efficient

● Also, the most work on Pb-Hash can help deal with super large vocabulary problem.
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Privacy for LLM and Vectorized Data

Protecting user data (e.g., embeddings) is a major challenge faced by applications of LLM.

Differential privacy (DP) works by adding (sufficient) noise to every dimension of the vector

Noise

The noises to be added are typically quite significant in order to rigorously satisfy the 
privacy requirement. Thus, DP-based algorithms usually suffer from poor performance.
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New DP algorithms based on (e.g.,) random projections (RP) and 1-bit (sign) quantization arXiv,

Green curve: directly adding noise to the original data leads to poor accuracy (y-axis). 

Our methods: At ɛ <= 5 ~ 10, our new DP methods achieves good accuracy. 

Privacy for LLM and Vectorized Data

Smaller ɛ => better privacy. ɛ <= 10 
is “cutoff” in 2023 Google survey for 
reasonable privacy guarantee.
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Privatized User Data and Embeddings 

user data embeddings privatized 
embeddings AI models

user data embeddingsprivatized 
user data AI models

Our users can securely share privatized embeddings with third parties for building AI 
models. Alternatively, users can entrust us with the responsibility of constructing models 
on their behalf, leveraging our state-of-the-art machine learning platforms and expertise. 16



Our Prior Works Related to Privacy 
ICLR’23, Improved Convergence of Differential Private SGD with Gradient Clipping

ArXiv’23, Differential Privacy with Random Projections and Sign Random Projections

ArXiv’23, Differentially Private One Permutation Hashing and Bin-wise Consistent Weighted Sampling

ICML’23, Regression with Label Permutation in Generalized Linear Model

ICML’23, One-Step Estimator for Permuted Sparse Recovery

KDD’23, OPORP: One Permutation + One Random Projection

SIGIR’23, Building K-Anonymous User Cohorts with Consecutive Consistent Weighted Sampling (CCWS)

ArXiv’22, k-Median Clustering via Metric Embedding: Towards Better Initialization with Differential Privacy

NeurIPS’22, Breaking the Linear Error Barrier in Differentially Private Graph Distance Release

IEEE CNS’22, NL2GDPR: Automatically Develop GDPR Compliant Android Application from Natural Language

ISIT’22, Distances Release with Differential Privacy in Tree and Grid Graph 17
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AI Model Security
In addition to privacy, the AI model security has become increasingly important: 

● FACT SHEET: Biden- Harris Administration Secures Voluntary Commitments from Leading 
Artificial Intelligence Companies to Manage the Risks Posed by AI, link, 

● The Blueprint for an AI Bill of Rights, link 

The list of our prior works on AI model security: 

AAAI 2023, Defending Backdoor Attacks on Vision Transformer via Patch Processing
NeurIPS 2022, Marksman Backdoor: Backdoor Attacks with Arbitrary Target Class
KDD 2022, Integrity Authentication in Tree Models
ICDE 2022, Identification for Deep Neural Network: Simply Adjusting Few Weights!
AAAI 2022, DeepAuth: A DNN Authentication Framework by Model-Unique and Fragile Signature Embedding
NeurIPS 2021, Backdoor Attack with Imperceptible Input and Latent Modification
ICCV 2021, LIRA: Learnable, Imperceptible and Robust Backdoor Attacks
ICCV 2021, Robust Watermarking for Deep Neural Networks via Bi-level Optimization
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Outline
1. Vector similarity functions

2. Vector compressions

3. Vector similarity search

4. Maximum inner product search (MIPS)

5. Fast neural ranking

6. GPU computing 

7. GCWSNet, hashing algorithms

8. Boosted trees, ABC-boost 

9. Privacy

10. Security 

11. Distributed, adaptive, and federated learning 

12. Others: generative AI models, NLP, knowledge graphs, multi-modal, cross-modal, advertising19



Vector Similarity Functions

Inner product: 

Consider vectors in D dimensions

D can be (e.g.,) 1024 or much larger

Euclidean distance:

The popular 
measure of 
similarity is 
the cosine

Another popular similarity is 
the RBF (Gaussian) kernel
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More Vector Similarity Functions

Lp distance:

Chi-square 
similarity

Min-Max 
similarity
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Early Works on Lp Distance (or Norms)

SODA 2008
SODA 2009

KDD 2007

Lp distance: Lp norm:

UAI 2009
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Anomaly Detection using Lp Norms or Entropy

The popular 
measure of 
similarity is 
the cosine

AISTATS 2017

NIPS 2008

COLT 2011

NIPS 2012

One major application is to detect (e.g.,) 
DDoS network attacks using entropy. 
Figure re-generated from a DARPA report.
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Compressed Sensing using (Sign) Projections

COLT 2014KDD 2013

AISTATS 2015
AISTATS 2016
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Machine Learning using Lp Distance

Lp distance: Lp norm:

UAI 2010

(Perhaps surprising!) For many datasets, the best 
classification accuracy is achieved at p>2, using 
m-nearest neighbor classifier (m = 1, 5, 10). 
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ABC-Boost Trees for Lp Regression

tree split criterion

ArXiv’22, pGMM Kernel Regression and Comparisons with Boosted Trees

ArXiv’22, Package for Fast ABC-Boost

GItHub, https://github.com/pltrees/abcboost 
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ABC-Boost Trees for Lp Regression
ArXiv’22, pGMM Kernel Regression and Comparisons with Boosted Trees
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pGMM Kernel versus Boosted L2 Regression
ArXiv’22, pGMM Kernel Regression and Comparisons with Boosted Trees
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Min-Max (MM) Kernel and pGMM Kernel

Most natural data vectors are non-negative. Embedding vectors using “ReLu” activation are 
also non-negative. For general data vectors with negative entries, we do the following:

A tuning parameter p can also be introduced: 
29



Min-Max (MM) Kernel and pGMM Kernel

KDD 2015 KDD 2017

ArXiv 2016 ArXiv 2017
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Min-Max (MM) Kernel and pGMM Kernel

ArXiv 2017
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Min-Max (MM) Kernel and pGMM Kernel

ArXiv 2017
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Min-Max (MM) Kernel and pGMM Kernel

ArXiv 2017
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Boosted Trees (ABC-Boost) vs. pGMM Kernel

ArXiv 2017

https://github.com/pltrees/abcboost 
34
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Do We Still Care about Kernels?

Do neural nets learn all nonlinearities?  Largely true. For example, we ourselves 
haven’t observed a case in which the Gaussian kernel outperforms the deep nets. 

On the other hand, the family of pGMM kernels is special. The discontinuity of the 
kernels is probably (part of) the reason why pGMM kernels can in many cases 
outperform neural nets. Tree models are another example of discontinuous models, 
and hence it is not surprising that tree models often outperforms neural nets.
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GCWSNet

CIKM 2022

Training neural nets (L = 2 layer and 
H = 200 hidden nodes) on CWS 
hashed data for pGMM kernels, we 
observe noticeable improvement 
over directly training neural nets on 
the original data (black dashed)
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Theory of the GMM Kernel
GMM kernel and cosine are surprisingly related, under symmetric data assumption.

WWW 2017
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Theory of the GMM Kernel

● We consider the model that the coordinates are i.i.d. samples from a symmetric 
bivariate distribution. We study the limit when the dimension D goes to infinity.  

● Assuming bounded 2nd moment, the cosine converges to the true correlation.

● Assuming only bounded 1st moment, GMM converges to a function of correlation.

● Thus, GMM is substantially more robust than the cosine. In other words, if the data 
do not have bounded 2nd moment, then it is meaningless to use the cosine. 

● Interestingly, even when the data are perfectly Gaussian (in this case, the cosine 
will be optimal), using GMM only very slightly loses the accuracy. 38



Theory of the GMM Kernel
● Use GMM and cosine to estimate the true correlation. In order to have bounded MSE 

(variance), GMM and cosine require, respectively, bounded 2nd and 4th moments.

● Dimension D = n = 1000, or 10000. v = 2.5  means bounded 2.5-th moment. 
● The GMM converges nicely and the variance follows the theoretical prediction. 
● The estimates by the cosine do not have bounded MSE (variance). 
● The GMM kernel is substantially more robust than the cosine. 

WWW 2017
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Theory of the GMM Kernel

● When data have bounded v = 4.5-th moment, the cosine estimates exhibit bounded 
MSE (variance), which is substantially larger than the MSE of the GMM estimates.

● Therefore, the GMM estimates will be substantially more accurate in usual realistic 
situations in where the data have some bounded moments with outliers.  

WWW 2017
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Theory of the GMM Kernel

● For data with bounded v = 8-th moment, the cosine and GMM have similar accuracy.

WWW 2017
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Theory of the GMM KernelWWW 2017

● When data are perfectly Gaussian (which is almost never the case in practice), using 
the GMM only slightly loses accuracy compared to using the cosine.

● Conclusion: practitioners can safely replace the cosine with GMM ! 

Warning: the GMM kernel is nonlinear (while cosine is linear) => need CWS hashing. 42



The Chi-Square SimilarityNIPS 2013
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The Chi-Square Similarity
arXiv 2023.  HNSW + chi-square similarity achieves better retrieval and KNN classification on public data. 
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Outline
1. Vector similarity functions

2. Vector compressions

3. Vector similarity search

4. Maximum inner product search (MIPS)

5. Fast neural ranking

6. GPU computing 

7. GCWSNet, hashing algorithms

8. Boosted trees, ABC-boost 

9. Distributed, adaptive, and federated learning 

10. Privacy

11. Security 

12. Others: generative AI models, NLP, knowledge graphs, multi-modal, cross-modal, advertising45



Benefits of Vector Compressions
● Save storage (memory) space

○ Long vectors => shorter vectors
○ Real value entries => integer or 1-bit entries
○ Examples: OPORP, sign-full random projections, and CWS 

● Provide indexing 
○ Sign Gaussian random projections
○ Sign Cauchy random projections
○ Sign Stable random projections
○ Sign random Fourier features (SignRFF)
○ b-bit Minwise hashing
○ b-bit consistent weighted sampling (CWS)

● Provide privacy

● Improve re-ranking efficiency

● Reduce dimension of big models
46
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One Permutation + One Random Projection
KDD 2023, OPORP: One Permutation + One Random Projections

● OPORP is a variant of count-sketch with fixed-length binning and normalization.

● The estimation variance is substantially reduced due to binning scheme and normalization.

● The analysis of the proposed OPORP leads to the normalized estimator and its variance, 
for “very sparse random projections” (VSRP, KDD 2006). 

● Further developments: 
○ OPORP + differential privacy (DP), e,g., arXiv 2023. 
○ OPORP + quantization, e.g., sign-full random projections (AAAI 2019). 
○ OPORP + big models, i.e., OPORP samples to replace or augment original features. 
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An Illustration of the OPORP Procedure

Original vector 6         11          0           4          3          8          7         1        9

1          7          4            8          9          0          3        11       6    

 -1        -1         +1          +1         -1        +1       -1       +1       -1

 -4                                    -1                              2

-0.8729                            -0.2182                     0.4364

Permuted vector

Random vector

Aggregation

Normalized

-1-7+4 = -4,              +8-9+0 = -1,          -3+11-6 = 2
(-4)^2 +(-1)^2+(2)^2 = 16+1+4 = 21 -4/square root(21) = -0.8729

(-0.8729)^2 +  (-0.2182)^2  +  (0.4364)^2 = 1.0

KDD 2023
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Connection to (Sparse) Random Projections

x

KDD 2023

 = 

The entries of the projection matrix           c can 
be Gaussian,  {-1, +1} with equal probability, 
other Gaussian-like distributions, or even 
heavy-tailed distributions such as Cauchy. 

The projection matrix can be very sparse, e.g., 
“very sparse random projections” (KDD 2006).

Count-sketch and OPORP use 
one projection vector (instead of 
a matrix) which is scrambled by 
the random permutation vector. It 
can be viewed as a special very 
sparse projection matrix. 
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OPORP Procedure
KDD 2023

50

https://pltrees.github.io/publication/KDD_2023_OPORP.pdf


OPORP Samples
KDD 2023
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The Un-normalized Estimator
KDD 2023

inner product: 

Given the OPORP samples:

we hope to estimate the inner product and the cosine:

cosine:

the un-normalized estimator, ie., the inner product of the samples
52
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The Un-normalized Estimator
KDD 2023

variance reduction factor due to the fixed-length binning scheme (the 1st scheme)

We must use s = 1 for OPORP
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The Un-normalized Estimator
KDD 2023

This is exactly the variance formula for “very sparse random projections” in KDD 2006.
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Very Sparse Random Projections (VSRP)

The variance of the un-normalized 
estimator of inner product is in KDD 2006.

The variance of the normalized estimator 
of VSRP can be shown only in this paper.

KDD 2006
VSRP uses a very 
sparse projection matrix
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The Normalized Estimator of OPORP
KDD 2023

The variance of the normalized 
estimator is substantially reduced 
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The Normalized Estimator of VSRP
KDD 2023

Just like OPORP, the variance of the normalized estimator of VSRP is substantially reduced 
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A Simulation Study of OPORP
KDD 2023

MSE = mean square errors
Blue = un-normalized
Red = normalized 
Dashed = theoretical var

Normalization improves 
accuracy especially in 
high-similarity region. 

Theory matches empirical

Original data vectors are 
normalized so that inner 
product and cosine 
estimators are the same. 58
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The Inner Product Estimators
KDD 2023

If the original data are not normalized, we have at least two estimators for inner product:

We can also approximately use 
the cubic equation for MLE 
solution (based on dense 
Gaussian random projections)

COLT 2006
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Experiments for Estimating Inner Products 
KDD 2023 Three estimators for estimating the inner product between a 

pair of word vectors, using the “Word dataset” in EMNLP 2005
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The “Word” Dataset

This dataset contains several thousand of word vectors. Each vector records the 
number of word occurrences in 2^16 = 65,536 documents. This dataset was 
initially used in 2005 for estimating word associations using “smallest-K-sketch” 
which was later developed into “Conditional Random Sampling” (CRS). 

https://github.com/pltrees/Smallest-K-Sketch 

● Ping Li' PhD Thesis. Stable random projections and conditional random sampling, two sampling techniques for 
modern massive datasets). Department of Statistics, Stanford University, 2007.

● Ping Li, Kenneth Church, Trevor Hastie. One Sketch For All: Theory and Application of Conditional Random 
Sampling. NIPS 2008.

● Ping Li, Kenneth Church. A Sketch Algorithm for Estimating Two-Way and Multi-Way Associations. Computational 
Linguistics 2007.

● Ping Li, Kenneth Church, Trevor Hastie. Conditional Random Sampling: A Sketch-based Sampling Technique for 
Sparse Data. NIPS 2006.

● Ping Li, Kenneth Church. Using Sketches to Estimate Associations. EMNLP 2005. 61
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Retrieval Experiments for OPORP and VSRP
KDD 2023

Comparing three algorithms: 
1 OPORP (un-normalized) 
2 OPORP-norm 
3 VSRP 

Normalization substantially 
improves the accuracy. 

Without normalization, both 
VSRP and OPORP have 
very similar accuracy when 
s=1 (parameter in VSRP). 

VSRP performs poorly using 
large s value (very sparse).

62
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Retrieval Experiments for OPORP and VSRP
KDD 2023

Comparing three algorithms: 
1 OPORP-norm 
2 VSRP (un-normalized)
3 VSRP-norm

Normalization substantially 
improves the accuracy. 

With normalization, both 
VSRP and OPORP have 
very similar accuracy when 
s=1 (parameter in VSRP). 

VSRP degrades when using 
large s value (very sparse). 63
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KNN Classification for OPORP and VSRP
KDD 2023

Comparing three algorithms: 
1 OPORP (un-normalized) 
2 OPORP-norm 
3 VSRP 

Normalization substantially 
improves the accuracy. 

Without normalization, both 
VSRP and OPORP have 
very similar accuracy when 
s=1 (parameter in VSRP). 

VSRP performs poorly using 
large s value (very sparse).
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Summary of OPORP
KDD 2023

● Count-sketch with 1. fixed-length binning, and 2. normalization for the estimation.

● The fixed-length binning reduces the variance by (D-k)/(D-1), which is substantial for 
relatively short embeddings. The fixed-length binning is also more convenient. 

● The normalization step reduces the variance from (1+⍴^2) to (1-⍴^2)^2, which is drastic 
especially in high-similarity region when ⍴ -> 1, e.g., duplicate detection.

● A side result is that we also develop the normalized estimator and provide its variance, for 
“very sparse random projections” (VSRP, KDD 2006). 

● Directions for further developments: 
○ OPORP + differential privacy (DP), e,g., arXiv 2023. 
○ OPORP + quantization, e.g., sign-full random projections (AAAI 2019). 
○ OPORP + big models, i.e., OPORP samples to replace or augment original features.
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Differential Privacy (DP) with OPORP

● Differential Privacy with Random Projections and Sign Random Projections. pdf
● Differentially Private One Permutation Hashing and Bin-wise Consistent Weighted Sampling. pdf
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Sign-Full Random Projections

Vector compressions via “sign-full random projections” is particularly natural for two-tower models. 

AAAI 2019

The “query” tower 
embeddings are typically 
generated on demand 
when a query arrives. It 
is hence natural to use 
the “full” precision.

The “item” (e.g., ads) 
tower embeddings are 
typically stored and hence 
compression is often 
needed to save space.
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Sign-Full Random Projections

● The original theory of sign-full random projections focuses on the standard (dense) Gaussian 
random projections, although in practice, we can allow sparse projections including OPORP.

● The theory is also built on top of a series of prior research on quantized random projections, by  
Goemans, Williamson, Charikar, etc., as well as our own prior works on random projections. 

● “Sign-Full” means the “query” vectors are not quantized (after random projections) while the “item” 
vectors are quantized to be 1-bit (i.e., the sign after random projections). It is only a special 
instance of a more general “asymmetric quantized random projections”; see NeurIPS 2019.

AAAI 2019
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Sign-Full Random Projections

Using a random projection matrix of size  D x k, sampled from Gaussian distribution, the projected

 data               follow the standard bivariate Gaussian distribution. This is un-normalized estimator  

AAAI 2019

69

https://arxiv.org/pdf/1805.00533.pdf


Sign-Full Random Projections
AAAI 2019

The normalized estimator and variance

The maximum likelihood estimator 
(MLE) by solving a cubic equation and 
the corresponding variance.
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Sign-Full Random Projections
AAAI 2019

Based on the well-known probability, one can use the “sign-sign” estimator: 
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Sign-Full Random Projections
AAAI 2019

The MLE estimator is the most 
accurate. The ratios of the variances 
show that the “sign-sign” estimator 
(V1) can be substantially improved.

The accuracy of the “sign-full” 
estimator (Vm) is substantially better 
than the “sign-sign” (V1) estimator.

The difference 
between blue (Vm) 
and black (V1) is 
the amount of 
improvement we 
can hope for with 
“sign-full”.
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Sign-Full Random Projections
AAAI 2019

The “sign-full” samples 

The MLE estimator for sign-full projections

The variance of the 
MLE estimator for 
sign-full projections

73

https://arxiv.org/pdf/1805.00533.pdf


Sign-Full Random Projections
AAAI 2019

The “sign-full” samples 

Based on this probability result, 
we develop the basic “sign-full” 
estimator and its variance.

Again, this estimator can be 
improved by a normalization step.
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Sign-Full Random Projections
AAAI 2019

The normalization step substantially 
reduces the estimation variance. 
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Sign-Full Random Projections
AAAI 2019

Two other “sign-full” estimators
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Sign-Full Random Projections
AAAI 2019

Use the “sign-sign” estimator (V1) as 
the baseline, to compare the four 
estimators as well as the MLE (Vm), 
for “sign-full” random projections.  

The MLE (Vm) is the most accurate, 
but MLE is computationally 
expensive and is not in a metric 
(inner product) form.

Overall,                is  a very good 
estimator, for non-negative data
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Sign-Full Random Projections
AAAI 2019

Retrieval experiments on RCV1 dataset to compare the “sign-sign” estimator        with two 
“sign-full” estimators:             ,         ,    for retrieving similar items exceeding a pre-specified 
threshold       .             shows  the best accuracy.          outperforms               at very high similarity. 

The experiments match the theory very well.
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Other Methods for Compressions

1. Stochastic quantizations for data vectors and model weights, e.g., SIGMOD 2021. 
2. Many quantization schemes for Gaussian projections, e.g., ICML 2014, NIPS 2016, NIPS 2017.
3. Sign Cauchy random projections, e.g., NIPS 2013. 
4. Sign Stable random projections, e.g., arXiv 2015. 
5. Sign random Fourier features, e.g., NeurIPS 2022. 
6. General quantization methods for random Fourier features, e.g., AISTATS 2021, ICML 2021. 

7. Minwise hashing, consistent weighted sampling, and related methods will be covered later.
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A typical scenario: given an input image, find a few similar images in the database of 
billions of images

A scenario of commercial value: query – ads (advertisement) matching

Query: “Travel in Alaska” (in Chinese)

Organic search results

Advertisement

KDD 2019

Embedding Based Retrieval (EBR)
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KDD 2019 Traditional pipeline: ads candidates generated 
using different metrics from final CTR model

New pipeline: candidates generated by 
considering business metrics (CTR)

After query embeddings and ads embeddings are generated, ANN 
(approximate near neighbor) search is  the key technology, because each 
input query might correspond to millions or more potential ads candidates. 

Embedding Based Retrieval (EBR)
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KDD 2019

The classical two-tower model is used for training  query and ads embeddings (by 
optimizing the cosine similarity). At the query time, each query embedding needs to be 
compared with millions or more ads embeddings. Thus, approximate near neighbor (ANN) 
search has become a standard component of EBR.

1. Business-related “weights” (e.g., bid 
price) can be considered at query time. 
ANN => approximate maximum inner 
product search (MIPS). 

2. We can replace this simple click/cosine 
model with another deep neural net. 
=> neural ranking

Mobius: Combining Recall with CTR Models
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MOBIUS: Towards the Next Generation of Query-Ad 
Matching in Baidu's Sponsored Search, KDD 2019

EGM: Enhanced Graph-based Model for Large-scale 
Video Advertisement Search, KDD 2022

CPM can be viewed as revenues.
CTR and CVR are directly related to revenues

Extremely useful for search, feed and advertising

EBR: better technology => increased revenues
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Approximate Near Neighbor (ANN) Search
ANN is an ancient topic in CS, possible starting in the 1970s; see Prof. Friedman’s works:

https://www.linkedin.com/feed/update/urn:li:activity:69650264
31579951104/  the talk at Google on 8/15/22 also discussed 
Prof. Friedman’s contributions on boosting and trees.
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Graph-Based ANN
Graph-based ANN algorithms (such as HNSW) have become very popular, especially in EBR 
applications. We will introduce HNSW based on our implementations and the GPU version.

Unlike other ANN algorithms such as hashing methods, the GPU version of HNSW is not trivial.

ICDE 2020
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Graph-Based ANNICDE 2020
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GPU ArchitectureICDE 2020

GPU for HNSW is not trivial. Need to understand architecture well for efficient implementation.
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ANN Performance EvaluationsICDE 2020
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ANN Performance EvaluationsICDE 2020
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Challenges with Graph-Based ANN
● Building graph indexing can be expensive. Updating graph indexing is also expensive.

● GPU implementation is not trivial (although we have done that).

● ANN + business filter is an urgent demand from industry.

● The search time is often dominated by the similarity computing time on the fly. 

● Maximum inner product search (MIPS) with graph-based ANN.

● Storing original embedding vectors can be too expensive, especially for the memory.

● (GPU) Fast neural ranking

Since 2017, we have been working on graph-based ANN algorithms and have 
developed many solutions to address the above challenges. 91



ANN + Business Filters
Constrained Approximate Similarity Search on Proximity Graph (first paper on this topic)
● Retrieving vectors satisfied the filter without reconstructing graph index
● More than 100X faster than FAISS (PQ) and HNSW (Vanilla) for most recall levels
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ANN + Business Filters
Constrained Approximate Similarity Search on Proximity Graph (first paper on this topic)
● Retrieving vectors satisfied the filter without reconstructing graph index
● More than 100X faster than FAISS (PQ) and HNSW (Vanilla) for most recall levels
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ANN + Business Filters
Constrained Approximate Similarity Search on Proximity Graph (first paper on this topic)
● Retrieving vectors satisfied the filter without reconstructing graph index
● More than 100X faster than FAISS (PQ) and HNSW (Vanilla) for most recall levels

94

https://arxiv.org/pdf/2210.14958.pdf


ANN + Business Filters: Example Use Cases
● Marketing

○ Constraints on the customer's preferences, purchase history, or the specific item they 
are currently viewing

● Fraud detection
○ Include patterns or thresholds for suspicious behavior, such as unusual transaction 

amounts, frequencies, or locations

● Talent Acquisition
○ Narrow down the pool to candidates/jobs with a particular skill set, a certain level of 

experience, or specific qualifications

● Healthcare
○ Filter on patient demographics, medical conditions, or treatment history

● Applications in Ads: ad publisher targets on given locations and/or companies
95



Updating Graph Indexes
Proximity Graph Maintenance for Fast Online Nearest Neighbor Search
● Adding/deleting data vectors without reconstructing graph index
● Our techniques are highly efficient with very little loss on accuracy

Relative 
efficiency at 
80% recall 
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Techniques for Sparse Vectors
● Natural vectors (e.g., from text n-gram data) are often 

sparse. Embedding vectors can be dense or sparse. By 
using our latest “Chi-square two-tower model”, we obtain 
highly sparse embeddings vectors. 

● HNSW for sparse vectors is a less explored area. We 
have developed a series of new techniques to improve 
the efficiency of HNSW on sparse data. 

● In particular, HNSW + hashing is proven effective, for 
example, HNSW + sign cauchy random projections.

● Since 2005, we have developed a wide range of hashing 
algorithms suitable for sparse data including b-bit 
minwise hashing, one permutation hashing, circular 
hashing, consistent weighted sampling (CWS), etc.

In an industry application, 
the sparsity (fraction of 
non-zeros) of embedding 
can be as low as 2%. 

97

https://arxiv.org/pdf/2306.07607.pdf
https://proceedings.neurips.cc/paper/2013/file/3210ddbeaa16948a702b6049b8d9a202-Paper.pdf


Vector Compression and Hashing
Webspam is high-dimensional, sparse, with ~4000 non-zeros per vector. With compression 
techniques (here we used “sign cauchy random projections” in NIPS’13), we can reduce each 
vector to k = 256 (or k = 2048) bits per vector, corresponding to 500-folder (or 62-fold) reduction 
in space. The overall similarity computational time for HNSW is reduced to 5-fold (or 13-fold). 

HNSW experiments with 
compression, as reported in  

Practice with Graph-based ANN 
Algorithms on Sparse Data: 
Chi-square Two-tower model, 
HNSW, Sign Cauchy Projections.
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Hashing-based ANN
● Example: each vector => 4-bit code => a hash table of 2^4 = 16 buckets. 
● All vectors are stored in the buckets according to the hash code. 
● When a new vector arrives, we generate its 4-bit hash code and retrieve the vectors in the 

corresponding bucket. This way, we can avoid exhaustive search of all data points.
● Only using one hash table may not perform well. Large table => too many buckets => tew 

retrieved points. A common strategy is to build multiple tables and use the union results. 
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In Defense of MinHash Over SimHash, AISTATS 2014

Fraction retrieved versus recall plots: standard way to 
evaluate ANN algorithms

Exhaustive search = 100% fraction retrieved 

Recall = percentage of ground truths in search results

SimHash: In order to achieve a recall at 90% (0.9), we need to search for 5% of the 
data points. 5% means a 20-fold reduction in cost, pretty good. 

MinHash: In order to achieve a recall at 90% (0.9), we need to search for 0.5% of 
the data points. 0.5% is ten times better than 5%.

Choice of Hash is Crucial
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MinHash versus SimHash
In Defense of MinHash Over SimHash, AISTATS 2014
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                                                    x:   user query embedding vector
                                                    y:   ads embedding vector
                                                    w:   weights from business considerations such as bid price

The task is transformed from maximum cosine search to maximum inner product search. 

Technical challenge: measures like cosine satisfy triangle inequality but inner products do not. 

Maximum Inner Product Search (MIPS) for Ads

103



Our works on MIPS

KDD’21, Norm Adjusted Proximity Graph for Fast Inner Product Retrieval 

EMNLP’19, On Efficient Retrieval of Top Similarity Vectors

NeurIPS’19, Möbius Transformation for Fast Inner Product Search on Graph

WWW’15, Asymmetric Minwise Hashing for Indexing Binary Inner Products and Set Containment

UAI’15, Improved Asymmetric Locality Sensitive Hashing (ALSH) for Maximum Inner Product Search (MIPS)

NIPS’14, Asymmetric LSH (ALSH) for Sublinear Time Maximum Inner Product Search (MIPS)
(The Best Paper Award in NIPS’14)
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Business Motivation for MIPS
KDD’19, MOBIUS: Towards the Next Generation of Query-Ad Matching in Baidu’s Sponsored Search 

By adding weights (e.g., bid price) to vectors, the search problem becomes 
MIPS, which is widely used in (e.g.,) advertising. The figures and tables are from 
Baidu’s published work in KDD’19, for the new CTR retrieval/training system.

Business 
impact 105
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Möbius Transformation for Fast Inner Product Search on Graph, NeurIPS 2019

Outline

Möbius Transformation for Fast MIPS on Graph
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General Setting

NeurIPS 2019

Möbius Transformation for Fast MIPS on Graph
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Search on graph

Möbius Transformation for Fast MIPS on Graph
NeurIPS 2019
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Voronoi Cells and Delaunay Graph

Möbius Transformation for Fast MIPS on Graph
NeurIPS 2019
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Sufficiency and Necessity Delaunay Graph

Möbius Transformation for Fast MIPS on Graph
NeurIPS 2019
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Empty Half Space Criterion

Möbius Transformation for Fast MIPS on Graph
NeurIPS 2019
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Empty Sphere Criterion

Möbius Transformation for Fast MIPS on Graph
NeurIPS 2019
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Mobius Transformation

Möbius Transformation for Fast MIPS on Graph
NeurIPS 2019
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Graph Isomorphism

Möbius Transformation for Fast MIPS on Graph
NeurIPS 2019
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Proposed algorithm

Möbius Transformation for Fast MIPS on Graph
NeurIPS 2019
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Experiments

Möbius Transformation for Fast MIPS on Graph
NeurIPS 2019
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Möbius Transformation for Fast MIPS on Graph
NeurIPS 2019
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item 1

item n

user

... ...

user item i

Trained on local 
domain-specific 
datasets

matching score / click through rate

n items to compare

fast neural ranking

privacy matters

Fast Neural Ranking: Better Accuracy

Neural net model is much 
more accurate than cosine

119



Key Components in Fast Neural Ranking

1. Replace cosine with a neural net and train the embeddings together with the neural net. 

2. Store embeddings just like in two-tower models (saving time using space). 

3. When a query arrives, generate (or retrieve) its embedding, and evaluate the neural net for 
every item embedding to find the best item with the maximum score. However, this would be 
extremely slow by evaluating all item embeddings for every query. This is the same 
motivation for vector ANN. The challenge however would be substantially more difficult. 

4. We have developed a series of fast neural ranking techniques which achieve high accuracy 
by only evaluating much less than 1% of the neural nets. 

5. In industry practice, to further boost the serving efficiency, it is often desirable to use GPUs 
for fast neural ranking. Hence this technique is also known as “GPU fast neural ranking”. 
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Our Works on (GPU) Fast Neural Ranking

WSDM’20, Fast Item Ranking under Neural Network based Measures 
(The proposed SL2G algorithm is the simplest algorithm and easy to use in practice)

VLDB'22, Fast Neural Ranking on Bipartite Graph Indices

KDD'22, EGM: Enhanced Graph-based Model for Large-scale Video Advertisement Search

SIGIR'23, Asymmetric Hashing for Fast Ranking via Neural Network Measures
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● No strong assumptions for ranking measures, linear or nonlinear, convex or 
non-convex

● Traditional ANN Search and MIPS are special cases of OBFS
● Specifically, we focus on neural network based binary functional  f

Fast Item Ranking under Neural Network based Measures, WSDM 2020

SL2G and Optimal Binary Function Search (OBFS)
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To bypass constructing Delaunay graphs with respect to complicated binary functions, SL2G has 
two steps:

1. No matter what the given binary function f is,  SL2G constructs a Delaunay graph (or an 
approximate one) with respect to l2 distance (which is defined on searching data X and 
independent of queries) in the indexing step. 

2. In the searching step, SL2G performs the greedy search on this index graph by the binary 
function f. 

Neural ranking: Search on L2 Graph (SL2G)
Fast Item Ranking under Neural Network based Measures, WSDM 2020
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Fast Neural Ranking on Bipartite Graph Indices, VLDB 2022

BEGIN: Fast Neural Ranking by Bipartite Graph
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BEGIN Construction

VLDB 2022
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Results for Neural Network Measures
Fast Neural Ranking on Bipartite Graph Indices, VLDB 2022
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GPU Computing
1. GPU for HNSW

2. GPU fast neural ranking 

3. GPU hierarchical parameter server for training massive-scale CTR models

4. GPU for feature processing

5. GPU for hashing

List of our relevant works on GPUs: 

WWW’12, GPU-Based Minwise Hashing
CIKM’19, AIBox: CTR Prediction Model Training on a Single Node
MLSys’20, Distributed Hierarchical GPU Parameter Server for Massive Scale Deep Learning Ads Systems
ICDE’20, SONG: Approximate Nearest Neighbor Search on GPU
BIGDATA’22, Communication-Efficient TeraByte-Scale Model Training Framework for Online Advertising
BIGDATA’22, FeatureBox: Feature Engineering on GPUs for Massive-Scale Ads Systems 128
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GPU for HNSW
ICDE 2020, SONG: Approximate Nearest Neighbor Search on GPU
● SONG (our GPU version of HNSW) can be close to 100 times faster than CPU HNSW
● SONG can be an order of magnitude faster than FAISS-IVFPQ (GPU)
● GPU HNSW saves the CPU-GPU data movement overhead when calling LLM

129

https://cs.rit.edu/~wjz/papers/conference/2020-icde-song.pdf


GPU-Based Minwise Hashing, WWW 2012 b-Bit Minwise Hashing in Practice, Internetware 2013

GPU achieves 100-fold improvements. Example of “embarrassingly parallelizable”. 

GPU for Minwise Hashing
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GPU for (Ads) CTR Model Training
1. (Ads) CTR models are still the major revenue source for AI.  CTR = click-through rate

2. CTR models can easily have trillion (1000 billion) parameters, even in 2014. 

3. Starting in 2018, training CTR models on GPUs became a reality, through innovations. 

4. The key is to carefully design a GPU-CPU-Disk (SSD) hierarchical engine. 

Hierarchical GPU parameter server for training massive CTR models. A major breakthrough 
in industry. The initial version called “AIBox” was mentioned in NVIDIA Jensen Huang’s talk in 
2019. See media report and publications in CIKM’19 (single GPU-box), MLSys’20 (multi 
GPU-box), BIGDATA’22 (GPU feature processing), BIGDATA’22 (GPU adaptive training), etc. 
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CIKM 2019: Mixed CPU-GPU training. 

Massive 10TB-parameter layer trained on 
CPUs. Offloaded to SSDs.

CIKM 2019

GPU for (Ads) CTR Model Training
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Train the massive layer also on GPUs

GPU for (Ads) CTR Model Training

MLSys’20
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Key architecture

GPU for (Ads) CTR Model Training

MLSys’20
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GPU for (Ads) CTR Model Training

MLSys’20

GPU (HPS 4 boxes) solution can be 2-4 times more 
efficient compared to CPU (MPI) cluster solution 135
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GPU for Feature Engineering
BIGDATA 2022

Reduce excessive I/O between HDFS and computing nodes
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GPU for Feature Engineering
BIGDATA 2022
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GPU Ads CTR Models with Local Training
BIGDATA 2022

K-step local adam updates 
reduces the training time.
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The Role of Vector DBs in Search and Ads
1. Embeddings have become the crucial component in search and ads. 

2. Embedding-based retrieval (EBR) is the key step for retrieval. 

3. EBR, ANN, Vector DBs, etc only provide very crude results and hence they typically serve as 
an important intermediate step in the pipeline of ads, search, and recommendation.

4. AI models for generating embeddings and models for prediction/rankings are crucial.  We will 
focus on big AI models (as well as privacy) for the rest of the presentation.
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● Amazon movie review: LLM + embedding + AI models :

○ 11,000 movie reviews (raw texts) => LLM => 11,000  embeddings in 384 dimensions.
○ 1,000 embeddings as test (query) vectors , 10,000 base vectors. 
○ HNSW and KNN classifiers to predict review ratings (1-5) => 60% accuracy.
○ ABC-Boost trees with 10,000 base vectors for training = > 70% accuracy.
○ MLP neural networks => 70% accuracy.
○ MLP neural networks + DCNV2 (deep feature crossing) => 71%.
○ MLP neural networks + BFI (8-block blockwise feature interactions) => 71%.

A Simple Demo

Only using embeddings and their similarities is typically not sufficient. Many applications 
will  need to build AI models on top of the embeddings from LLM or other methods. 

140

https://arxiv.org/pdf/2306.15881.pdf


DCNv2 uses D2 parameters 
for each cross layer

Blockwise Feature Interaction 
(BFI) shuffles the features and 
partition them into blocks to 
compute feature interactions 
in a smaller scale

The output of each block are 
merged and reshuffled.
The feature interaction across 
multiple blocks is addressed 
through multiple cross layers 
with this reshuffle

BFI: Blockwise Feature Interaction

Arxiv 2023: Blockwise Feature Interaction in Recommendation Systems 141
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BFI: Blockwise Feature Interaction
We implemented 4 variants 
of BFI: P, Q, T, S. 

P does the most work and 
usually performs the best. 

P6 means that we divide 
the features into 6 parts. 
The computation cost is 
reduced by a factor 6, and 
the # of parameters is also 
reduced by a factor 6. 

T6 further reduces the 
number of parameters by a 
factor of 36. Arxiv 2023: Blockwise Feature Interaction in Recommendation Systems 142
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Outline
1. Vector similarity functions

2. Vector compressions

3. Vector similarity search

4. Maximum inner product search (MIPS)

5. Fast neural ranking

6. GPU computing 

7. GCWSNet, hashing algorithms

8. Boosted trees, ABC-boost 

9. Distributed, adaptive, and federated learning 

10. Privacy

11. Security 

12. Others: generative AI models, NLP, knowledge graphs, multi-modal, cross-modal, advertising143



Lightweight and High-Accuracy Deep Learning

Dashed curve: test accuracy with a 2-hidden-layer neural 
net on the original data. The best accuracy is about 0.86.

k = 64 solid curve: using CWS hashing as features, the 
accuracy can be improved to 0.9 with faster convergence. 

Using more (larger k) hashes improves the accuracy. 
Training with CWS hashing converges much faster too.

CIKM’22: GCWSNet: generalized Consistent Weighted Sampling for Scalable and Accurate Training of Neural Networks 

GCWSNet
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GCWSNet
CIKM 2022
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GCWSNet
CIKM 2022

GMM kernels produce 
accurate classification results
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From Hashed Data to Features
CIKM 2022

Hashed data are ID (categorical) features and should be expanded by one-hot representation.

For example, with k = 3 hashes (3, 0, 1), each in b = 2 bits, we can expand them to be 12-dims

                                           =>

GCWSNet has two main parameters: k = number of hashes, and b = number of bits per hash
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GCWSNet: CWS + Neural Nets 
CIKM 2022

● Classification on the SEMG dataset using neural nets with L layers and H hidden units. 
L = 1: logistic regression. L = 2 means one hidden layer. 

● Dashed (black) curve =  the original data
● GCWSNet with k = {64, 128, 256, 512} hashes and b = 8 bits for each hash.
● For this dataset, GCWSNet substantially improves 
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GCWSNet: CWS + Neural Nets 
CIKM 2022
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GCWSNet: CWS + Neural Nets 
CIKM 2022

On UCI Covtype dataset, 
GCWSNet substantially 
improves the accuracy.

GCWSNet also converges 
much faster.
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GCWSNet: CWS + Neural Nets 
CIKM 2022

Accuracy at the first epoch.

GCWSNet convergest fast.
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GCWSNet: the Effect of b (# bits)
CIKM 2022
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GCWSNet: Stable Power Transformation
CIKM 2022

It is mathematically equivalent to applying 
power transformation on the original data. 

However, GCWSNet (with parameter p) 
would be substantially more stable.
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GCWSNet: Stable Power Transformation
CIKM 2022

Pendigts dataset have integer values. 
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GCWSNet: Stable Power Transformation
CIKM 2022

M-Noise1 dataset has values in [0, 1]
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GCWSNet versus NRFF
CIKM 2022

NRFF 
= normalized random Fourier features

RFF and NRFF perform very poorly 
compared to GCWSNet. 

Even with k = 8192 hashes (dashed), 
NRFF still performs very poorly.
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Other Hashing Methods

● Conditional Random Sampling (CRS, smallest-k sketch)
● Minwise hashing 
● One permutation hashing  (OPH)
● Circulant minwise hashing (C-MinHash)
● Partitioned b-bit hashing (Pb-Hash)
● Extremal processes
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• Still very useful and should not be ignored. 

• Simple and can be powerful if used properly, e.g., with query augmentation/expansion. 

• Often very high-dimensional and even the storage can be a bottleneck if materialized. 

• Hashing can be effective if good hashing methods are adopted. Since data are highly 
sparse, their non-zero locations themselves carry strong information. Making good use of 
the prior information is beneficial. Certain popular hashing methods like random projections 
“destroy” the sparse structure and would not expect to work well on sparse data. 

Term-based Representations? 
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A fun experiment in 2004/2005 at Microsoft Research

Ken Church
https://www.linkedin.com/in/kenneth-church-a902772
/ 

We expected the counts for single words  are exact and stored. 

We expected the counts for the 
intersections of two or more 
words are estimated because 
there would be way too many.
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A fun experiment in 2004/2005 at Microsoft Research

Query execution optimization: 

Suppose the goal is to find all the 
intersections among 4 words.

Intuitively we should start with two 
“shortest“ words. But in this 
example, the two shortest words are 
almost semantically identical. 

It would be a lot better to start with 
“Schwarzenegger” and “Austria” 160



Classical contingency table estimation problem

The task is to estimate “a” (and other cells) from 
the sample table. Obviously, we can estimate 
“a” by a simple scaling D/Ds, but we hope to 
make use of the marginal information: |P1| = 
a+b = f1,  |P2| = a+c = f2, which are assumed to 
be known. 

Let P denote “postings” (or inverted index) for the word, i.e., P contains a list of document IDs which 
contain that particular word.  The size of the postings for single words can be assumed to be known 
(and stored). The goal is to compute (or estimate) the intersections among two postings.
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MLE (maximum likelihood estimator)

We can take log and hope 
to simplify the expression. 
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MLE (maximum likelihood estimator)

The MLE solution can be quite complicated:

It can be simplified to be 

Still complicated 163



Simplifying the MLE by sample-with-replacement

With the “sample-with-replacement” assumption, the likelihood function can be simplified 

The MLE solution is then a cubic equation:

Still complicated 164



From cubic to quadratic, a “brave” simplification 

We can imagine there are two independent binomial problems for the same “a”. 

The MLE solution is then a quadratic equation:

with a closed-form solution:

This is a very accurate formula for solving the original contingency table estimation problem.
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[1] Using Sketches to Estimate Association, EMNLP 2005

[2] A Sketch Algorithm for Estimating Two-Way and Multi-Way Associations. 
Computational Linguistics 2007

References to the quadratic formula
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Can we simply use a very large sample size (Ds)? 

Divesh Srivastava 
https://www.linkedin.com/in/divesh-srivastava-98a5b2/ 

How to obtain good samples

In early 2007, during a visit to AT&T Labs, Divesh asked me this exact 
question.  My answer was that, since the data are sparse and we 
store only non-zero locations anyway, using a large sample size (Ds) 
should work reasonably well, but there are better methods.

Andrei Broder
https://www.linkedin.com/in/andrei-broder-b2159/  

We adopted the idea from Andrei and his colleagues on 
“minwise hashing” (actually the method was not 
“minwise” to start with in 1997). Many prominent 
researchers including Moses Charikar, Piotr Indyk, 
Michael Mitzenmacher etc have made contributions to 
minwise hashing, which has had numerous applications.
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Sampling only from non-zero locations

This step is the same as in the original (bottowm-k version) of minwise hashing by Broder et al.

Our method (published in 2005) differs in the estimation procedure.  

We first apply a random permutation on all postings (inverted indexes)  and keep the first a few non-zero 
locations . Later, we estimate the original similarity (between postings) for each pair of sketches. 

Resemblance
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Broder’s (1997) original estimator

In 2004 (published in EMNLP 2005), we developed “Conditional Random Sampling (CRS)” to avoid throwing away 
half of the samples. It turns out the CRS generalizes naturally to non-binary data (published in NIPS 2006, 2008).

An unbiased estimator based on hypergeometric was proposed in 1997 by throwing away half samples: 
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This way, we effectively obtain a random sample for each pair with the sample size determined only at 
the estimation time. Then, we can apply good estimators from statistical theory. In particular, we still 
throw away some samples (in this case, “19”,”21”), but not as many as one half. 

Suppose for two postings (inverted indices), we take (after permutation) 
the first 7 non-zero locations (light gray box) as the sketches.  

We claim that we would obtain exactly the same samples if we simply take the first 18 (=min(18,21)) 
columns from the equivalent binary (0/1) data matrix. But since we apply the permutation on 
columns, any columns (including the first 18 columns) would constitute a random sample. 

Conditional Random Sampling (CRS)
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CRS for non-binary data

A great advantage of CRS is that it is natural applicable to non-binary data. It is also natural 
to use CRS for three-way and multi-way similarities, because we have a random sample.

Therefore, we have a one-sketch-for-all scheme. The drawback of CRS is that the sample size Ds is 
determined only at the estimation time and Ds is different from different pair (or group) of sketches, 
meaning that we do not have a metric space and CRS can not be used for certain applications. 

Figures from NIPS 2006 paper. NIPS 2008 showed it is better to 
use 10 – 1 = 9 as the sample size.

CRS for Non-Binary Data
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[1] Stable random projections and conditional random sampling, two sampling techniques for modern massive 

datasets, Ping Li’s PhD Dissertation, 2007

 Prof. Trevor Hastie            Prof. Art Owen         Prof. Robert Tibshriani    Prof. Persi Diaconis     Prof. Tim Roughgarden

[2] Using Sketches to Estimate Association, EMNLP 2005

[3] Conditional Random Sampling: A Sketch-based Sampling Technique for Sparse Data. NIPS 2006

[4] A Sketch Algorithm for Estimating Two-Way and Multi-Way Associations. Computational Linguistics 2007

[5] One Sketch For All: Theory and Application of Conditional Random Sampling. NIPS 2008

It appears that CRS (or “bottom-k” sketch) later has become very useful in other areas too.

Another half of the thesis is about “stable random projections”. 

References for CRS 
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• Originally developed by Andrei Broder and his colleagues in late 1990s, minhash is one of the a few 
randomized algorithms that is widely used in practice. 

• Minhash was originally motivated by the near-duplicate detection task, reported in 1997. It was “bottom-k” 
and became the “minwse hashing” form since the 1998 STOC paper, by using k permutations. 

• b-bit minwise hashing was developed, by storing only the lowest b-bits of each hash value. (WWW 2010)

• A paradigm was developed for using b-bit minwise hashing in large-scale machine learning. (NIPS 2011)

• One permutation hashing (OPH) was developed by breaking data vectors into k bins. (NIPS 2012)

• OPH needs to be densified (filling the empty bins) in order to use OPH for ANN. (ICML 2014, NIPS 2019)

• Circulant-MinHash (C-MinHash) reuses one permutation to replace k permutations. Combined with OPH, 
C-MinHash only reduces 1/k permutation (instead of k or 1 permutations). (ICML 2022 and arXiv reports).

• Extensions to non-binary data: consistent weighted sampling, extremal processes sampling, etc. 

Minwise Hashing and Related
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MinHash for high-dimensional 0/1 data
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MinHash for high-dimensional 0/1 data
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MinHash for high-dimensional 0/1 data
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MinHash for high-dimensional 0/1 data
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MinHash for high-dimensional 0/1 data
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MinHash for high-dimensional 0/1 data
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MinHash for high-dimensional 0/1 data
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MinHash for high-dimensional 0/1 data
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b-bit minwise hashing

Theory and Applications of b-Bit Minwise Hashing, Communications of ACM 2011  (also WWW 2010)

Collision probability is still 
proportional to R, the similarity

Arnd Christian König
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b-bit minwise hashing for learning

Hashing Algorithms for Large-Scale Learning, NIPS 2011
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One Permutation Hashing (OPH)
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One Permutation Hashing, NIPS 2012

One Permutation Hashing (OPH)
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One Permutation Hashing, NIPS 2012

Prof. Art Owen 

The estimator is simple: count the total number of matches in all bins, count the total 
number of jointly empty bins. The following ratio estimator is (surprisingly) unbiased: 

Variance is slightly smaller 
than original minhash

Prof. Cun-hui Zhang
  

One Permutation Hashing (OPH)
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Main issue with OPH : empty bins

Total number of matches is an inner product. 

Total number of jointly empty bins, however, is unknown until estimation time. 

The overall estimator cannot be written as an inner product.  It does not satisfy 
the requirement of locality sensitive hashing (LSH), unlike the original minhash.

Prof. Moses Charikar Prof. Piotr Indyk Prof. Rajeev Motwani

Examples of researchers 
who made substantial 
contributions to LSH
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Minwise hashing for approximate near neighbor search 

An example with L = 2 tables, 
b = 2 bits, and k = 2 hashes

With one permutation hashing (OPH), however, the empty bins would not be able to provide useful 
information, i.e., we don’t know which bin to put the data points into, if part of the hash is empty.

Typically, one might want 
to use b = 2-4 bits, k = 
4-12, and L as large as 
possible
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OPH with empty bins for ANN 

Densifying One Permutation 

Hashing via Rotation for Fast Near 

Neighbor Search, ICML 2014

Three strategies to deal with empty bins. First two do not work well. 

1. Empty Equal (EE): we assign empty bins a fixed symbol. Then any empty will match with any other empty 
bin. This will create a lot of spurious matches, i.e., will retrieve many unnecessary data points. 

2. Empty Not Equal (ENE): we assign empty bins random numbers. The chance for two empty bins to match 
is very small. This strategy will likely retrieve too few data points. 

3. Proper densification: We can always borrow hash values from the closest (in fixed direction) non-empty 
bins. There are many variants and “optimal” schemes, after the 2014 ICML paper on densification. 189
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OPH with empty bins for ANN 

Densifying One Permutation 

Hashing via Rotation for Fast Near 

Neighbor Search, ICML 2014

1. We plot the fraction retrieved (compared with the total) versus L, the number of tables. We can see that 
the proposed densification scheme works well and matches the performance of original minwise hashing.

2. Empty Equal (EE) retrieves too many points and Empty Not Equal (ENE) retrieves too few data points.
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The most recent strategy for OPH densification 

Re-randomized Densification for One Permutation Hashing and Bin-wise Consistent Weighted 
Sampling, NeurIPS 2019

In the paper, four different densification schemes are theoretically analyzed 
and compared.

Rs, RsRe, Den, DenRe (Densification with Re-randomization). We will not 
explain the details here, but nevertheless, we still paste the main variance 
calculations here to show that they can be analyzed, via non-trivial efforts. 
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In the paper, four different densification schemes are theoretically analyzed and 
compared.

Rs, RsRe, Den, DenRe (Densification with Re-randomization). We will not explain the 
details here, but nevertheless, we still paste the main variance calculations here to show 
that they can be analyzed, via non-trivial efforts. 

Re-randomized Densification for One 
Permutation Hashing and Bin-wise Consistent 
Weighted Sampling, NeurIPS 2019

Here we use “J” to 
stand for resemblance. 
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The most recent strategy for OPH densification 

Take-away message: we will be able to use just one permutation (instead of K permutations) , 
with advanced densification methods to fill the empty bins, to generate M hash values, where 
M can be even larger than K. The accuracy is in fact better (lower MSE) than original minhash

We estimate resemblance 
between two word 
vectors: “Hong” and 
“Kong”, by generating M 
samples with K bins and 
four denstification 
methods to fill empty bins.

Empirical mean square 
error (MSE) of 
estimates are compared 
with the theoretical 
variances (dashed). 
They match well.  
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If we don’t do densification, we can still just use “one permutation” by circulant hashing trick.

Consider a binary vector with 
three non-zero locations at 2, 4, 5

Suppose we have a permutation. By (circulant) shifting 1, we obtain another permutation. 

Hash value = 3 
Hash value = 1 

Circulant MinHash (C-MinHash)
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Original minhash

Circulant minhash 
without initial 
permutation

Circulant minhash with an 
independent initial permutation

Algorithm 4: the same 
initial permutation can 
be re-used for hashing

C-MinHash: Improving Minwise Hashing with 
Circulant Permutation, ICML 2022

Circulant MinHash (C-MinHash)
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C-MinHash is provably more accurate than MinHash

An example to illustrate that  the theoretical variance 
of C-MinHash is smaller, compared with MinHash. 

C-MinHash: Improving Minwise Hashing with 
Circulant Permutation, ICML 2022

“J” stands for resemblance 
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C-OPH: Improving the Accuracy of One 
Permutation Hashing (OPH) with Circulant 
Permutations, arXiv 2021

Original MinHash  :  K permutations 

OPH : 1 permutation, densification needed 

C-MinHash: 1 permutation (2 permutations merely for theoretical analysis) 

C-MinHash + OPH:   1/K permutation

Note that these are exact permutations instead of approximations (such as 
universal hashing).  In prior practice,  users cannot store K permutations hence 
resort to approximate permutations. Now, it is expected that users can store 1 
permutation, or at least 1/K permutation. Therefore, it is probably the time to 
move the practice from approximate to exact permutations. 

Integration of C-MinHash with OPH
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Pb-Hash: Partitioned b-Bit Hash

Pb-Hash = break the bits of a hash code into m chunks and use them as separate hashes.

Interestingly, Pb-hash can be applied to dealing with massive ID features, not just from hash.

https://arxiv.org/pdf/2306.15944.pdf 

In this motivating example, 
massive ID features correspond 
to big models in search and ads. 
They typically require a huge 
embedding layer. If we break the 
ID feature into m = 3 chunks, the 
model size and embedding table 
can be drastically reduced. 

QR-hash (m=2) is a special 
instance for this particular case. 198
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Pb-Hash: Partitioned b-Bit Hash

● Many hash algorithms (e.g., minwise hashing) produce k hashes of B bits, where B might be 
originally very large such as 64, or 32. They correspond to ID features in 2^B dimensions.

● The idea of b-bit hashing is to use the lowest b bits out of the B bits. This significantly 
reduces the storage and the dimensionality, from 2^B to 2^b. The loss of accuracy can 
typically be compensated by somewhat increasing k, the number of hashes. 

● The idea of Pb-hash is to divide the B bits into m chunks with b x m  = B, and treat each 
chunk as a separate hash. This way, we can re-use the hashes in a more effective way. 

● However, re-using the same original hash will hurt the performance due to correlation 
(because they are not independent hashes). This effect can be fairly accurately calculated, 
which provides guidance to the design such as the choice of m. 

https://arxiv.org/pdf/2306.15944.pdf 
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Benefits of Pb-Hash

● Generating hashes can be expensive for industrial-scale systems especially for many 
user-facing applications. Thus, engineers may hope to make use of each hash as much as 
possible, instead of generating more hashes (i.e., by increasing the k). 

● To protect user privacy, the hashes might be artificially “polluted” and the differential privacy 
(DP) budget is proportional to k. See arXiv 2023.

● After hashing, the original data are not necessarily stored and hence it might not be even 
possible to generate more hashes. 

● One special scenario is that we can also apply Pb-Hash to the original categorical (ID) 
features, not just limited to hashed data. This is also the motivation for QR-Hash

https://arxiv.org/pdf/2306.15944.pdf 
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The Basic Assumption of Pb-Hash
https://arxiv.org/pdf/2306.15944.pdf 
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Theoretical Analysis of Pb-Hash
https://arxiv.org/pdf/2306.15944.pdf 
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Theoretical Analysis of Pb-Hash
https://arxiv.org/pdf/2306.15944.pdf 
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Theoretical Analysis of Pb-Hash
https://arxiv.org/pdf/2306.15944.pdf 
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Theoretical Analysis of Pb-Hash
https://arxiv.org/pdf/2306.15944.pdf 
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Theoretical Analysis of Pb-Hash
https://arxiv.org/pdf/2306.15944.pdf 

Variance of Pb-hash over 
variance of original hash.

The ratio ~= 1 means no loss 
of accuracy.
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Experiment of Pb-Hash on Minwise Hashing
https://arxiv.org/pdf/2306.15944.pdf 

Left panel indicates that even with m = 16 (chunks), we do not observe loss of accuracy. 
Right panel is the zoomed-in view to better tell the differences among due to different m. 
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Experiment of Pb-Hash on CWS
https://arxiv.org/pdf/2306.15944.pdf 
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Experiment on CWS and NN Embeddings
https://arxiv.org/pdf/2306.15944.pdf 
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Consistent Sampling via Extremal Process

● Replace real-value computations with integers. Speed up the computations of CWS
● Provide theoretical understanding on the origin and evolution of CWS. 
● Deliver insight for developing more efficient CWS algorithms in the near future. 
● Solve the notorious difficult problem of CWS (i.e., “0-bit CWS”), under the new setting. 
1.

WWW 2021
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Consistent Sampling via Extremal Process

is a highly useful empirical observation 
in KDD 2015. However, no theoretical 
justification has been conducted.

We solve the analogous problem under 
the setting of extremal processes.
. 
1.

WWW 2021

211

https://statweb.rutgers.edu/pingli/papers/0bitCWS.pdf
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Consistent Sampling via Extremal Process
Operations only involve integers. WWW 2021

ES and relaxed ES estimators
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Consistent Sampling via Extremal Process
Operations only involve integers. WWW 2021
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Consistent Sampling via Extremal Process
WWW 2021

The bias of relaxed ES is precisely predicted by theory.  MSE can tell the difference. 214
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Summary of Extremal Process (ES)
WWW 2021

● ES has a number of advantages over CWS: 
○ It avoided real-valued operations and hence can be computationally more efficient.
○ We have carried out the theory for the “relaxed” version of ES. 
○ Our study provides insights for further improvement of CWS in the near future. 

● ES exhibits one major disadvantage in that it needs to know the range of the data, 
otherwise additional sampling steps are needed to expand the range during sampling. 

● Another disadvantage of ES is that we have observe empirically that the relaxed version 
of ES is slightly less accurate (i.e., higher bias) than the relaxed version of CWS.
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Outline
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Accurate and Efficient Boosted Tree Models

● The series of works in 2007 - 2010 are behind 
the success of several popular tree platforms.

● ABC-Boost can be substantially more 
accurate and more efficient in many datasets. 

● https://hunch.net/?p=1467,  Discussions in 2010 about Ping Li’s boosting algorithms
● Ping Li. ABC-Boost: Adaptive Base Class Boost for Multi-Class Classification. ICML 2009.
● Ping Li. Robust LogitBoost and Adaptive Base Class (ABC) LogitBoost. UAI 2010.
● Ping Li and Weijie Zhao. Fast ABC-Boost: A Unified Framework for Selecting the Base Class in Multi-Class Classification. 

arXiv:2205.10927 2022.
● Ping Li and Weijie Zhao. Package for Fast ABC-Boost. arXiv:2207.08770, 2022.
● Ping Li and Weijie Zhao. pGMM Kernel Regression and Comparisons with Boosted Trees. arXiv:2207.08667, 2022.
● Lecture notes on trees & boosting (pages 14-77) https://statweb.rutgers.edu/pingli/doc/PingLiTutorial.pdf

ABC-Boost tree models
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Recent developments of trees and boosting
https://hunch.net/?p=1467 
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Recent developments of trees and boosting
https://hunch.net/?p=1467 

This is certainly a huge advantage of trees!
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2010 Yahoo! Learning to Rank Grand Challenge

http://proceedings.mlr.press/v14/chapelle11a/chapelle11a.pdf   (pages 18 – 19)

In memory of Olivier Chapelle     https://neurips.cc/virtual/2020/memorial/21606 
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Recent developments of trees and boosting

Classical works on boosting and trees before early 2000 were developed by pioneers including Schapire, 
Freund, Bartlett, Singer, Friedman, Hastie, Tibshirani, etc.  

More recently, three major developments have made boosted trees more practical and more accurate. 

1. The adaptive binning strategy for effectively transforming any data types into integers. This makes tree 
implementations much more convenient and more efficient.  [Ping Li et al, NIPS 2007]

2. The gain formula for tree-split using 2nd-order information. This (in retrospect) simple formula has often 
made trees substantially more accurate. Using only 1st-order information sometimes did not beat kernel 
SVMs. This formula is now the standard implementation of popular tree platforms. [Ping Li, UAI 2010]

3. The new derivatives (different from textbooks) of logistic regression by assuming a base class and 
strategies for selecting the base class. These have improved the accuracy of many multi-class 
classification tasks. [Ping Li, ICML 2009]
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The adaptive binning algorithm

Tree algorithm only 
splits where there are 
data and makes  
arbituary decision where 
they are no data

For this split, two bins 
(0,1) migth be sufficient.

Therefore, we can divide the each 
dimention (feature) into equal-lengh bins 
(for simplisity) but we only assign bins 
where there are data. This strategy is simple 
and effective. 

McRank: Learning to Rank Using Multiple Classification and Gradient Boosting,  NIPS 2007
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https://proceedings.neurips.cc/paper/2007/file/b86e8d03fe992d1b0e19656875ee557c-Paper.pdf


Why this simple binning method works well?

We have been using this simple (fixed-length) binning method for 15 years. We expect there is ample room 
to improve the algorithm, but surprisingly we haven’t found one that is universally (or largely) better, except 
that when the  maximum number of bins (MaxBin) is too small such as 10 or 20. 

1. For discrete features such as {1, 2, 3,…}, this method does not impact the data. 

2. The maximum allowed number of bins (i.e., the MaxBin parameter) should not be too small any way 
for boosted trees. Too much information would be lost if the data are too coarsely quantized. With that 
many bins (e.g., MaxBin = 1000), it is probably not so easy to improve this fixed-length strategy, as far 
as the performance of boosting trees is concerned.

3. We  should not expect all features  would use the same number of bins. Typically, in one dataset, the 
features can differ a lot. For example, some features might be binary  (i.e., even  using MaxBin = 1000 
would only generate two values), some features may have just 100 distinct  values (i.e., using MaxBin = 
1000 would still just generate at most 100 values), and some features really need more quantization 
levels. Therefore, the parameter MaxBin is just a crude guideline. Trying too hard to ``optimize'' the 
binning procedure according to a given MaxBin is likely counter-productive in real datasets. 223



Gain formula for tree-split using 2nd-order information

This formula is behind the success of popular tree platforms: 

Robust LogitBoost and Adaptive Base Class (ABC) LogitBoost, UAI 2010 
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Boosting for binary classification

This is the result from 
the 2010 UAI paper (in 
Appendix), which might 
be very slghtly different 
from the output of the 
current package. 

This largely explains the 
success of boosting in 
practice in past decade: 

The second-order tree 
split formula is the key. 

Robust LogitBoost and Adaptive Base Class (ABC) LogitBoost, UAI 2010 
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2nd-order tree split formula for general loss functions

General formula for any loss function with second derivatives: Lp regression boosting, ranking algorithms, etc. 
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Lp boosting for regression

 = 2 if p = 2 (the usual L2 boosting)
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Regression comparison results
Detailed comparisons: LR, RBF, GMM, pGMM, and L2-Boost https://arxiv.org/pdf/2207.08667.pdf 
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Lp boosting

For some datasets, the difference between 
L2 boost and Lp boost can be substantial   
https://arxiv.org/pdf/2207.08667.pdf 

229

https://arxiv.org/pdf/2207.08667.pdf


ABC-Boost for multi-class classification

In textbooks, these are the first and second derivatives of logistic regression loss function:

ABC-Boost: Adaptive Base Class Boost for Multi-class Classification,  ICML 2009

The ICML 2009 paper derived a new set of derivatives, by assuming class 0 is “base class”:
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https://arxiv.org/pdf/1001.1020.pdf    Figure 2

An Empirical Evaluation of Four Algorithms for Multi-Class 
Classification: Mart, ABC-Mart, Robust LogitBoost, and ABC-LogitBoost     
arXiv 2010
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https://arxiv.org/pdf/1001.1020v1.pdf
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Comparisons with GMM kernels, trees and deep nets
https://arxiv.org/pdf/1701.02046.pdf
https://arxiv.org/pdf/1805.02830.pdf 

Six datasets created by CIFAR for deep learning study

Error rate, lower the better 

Min-Max (GMM) without tuning 
achieved similar accuracy as SVM 

Boosted tree models can do much better
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https://arxiv.org/pdf/1701.02046.pdf
https://arxiv.org/pdf/1805.02830.pdf 

Six additional datasets created by CIFAR for deep learning study

Error rate, lower the better 

Tunable Min-Max Kernels do better 
than deep nets in most cases.

Tunable Min-Max Kernel can be 
close to boosted tree models

Comparisons with GMM kernels, trees and deep nets

233

https://arxiv.org/pdf/1805.02830.pdf
https://arxiv.org/pdf/1805.02830.pdf


[1] https://github.com/pltrees/abcboost , open source package

[2] http://statistics.rutgers.edu/home/pingli/STSCI6520/Lecture/ABC-LogitBoost.pdf , Lecture notes in 2012 

[3] http://www.stat.rutgers.edu/home/pingli/doc/PingLiTutorial.pdf , Tutorial edited during 2012-2015 

[4] McRank: Learning to Rank Using Multiple Classification and Gradient Boosting,  NIPS 2007

[5] Adaptive Base Class Boost for Multi-class Classification,  arXiv 2008  (worst-class search)

[6] ABC-Boost: Adaptive Base Class Boost for Multi-class Classification,  ICML 2009 (exhaustive search)

[7] Robust LogitBoost and Adaptive Base Class (ABC) LogitBoost, UAI 2010 (second-order tree-split formula)

[8] Fast ABC-Boost for Multi-Class Classification, arXiv 2010

[9] An Empirical Evaluation of Four Algorithms for Multi-Class Classification, arXiv 2010

[10] pGMM Kernel Regression and Comparisons with Boosted Trees, arXiv 2022

[11] Classification Acceleration via Merging Decision Trees, FODS 2020

[12] Fast ABC-Boost: A Unified Framework for Selecting the Base Class in Multi-Class Classification, arXiv 2022

A recent talk at Google:  https://www.linkedin.com/feed/update/urn:li:activity:6965026431579951104/ 

234

https://github.com/pltrees/abcboost
http://statistics.rutgers.edu/home/pingli/STSCI6520/Lecture/ABC-LogitBoost.pdf
http://www.stat.rutgers.edu/home/pingli/doc/PingLiTutorial.pdf
https://proceedings.neurips.cc/paper/2007/file/b86e8d03fe992d1b0e19656875ee557c-Paper.pdf
https://arxiv.org/pdf/0811.1250.pdf
https://icml.cc/Conferences/2009/papers/417.pdf
https://event.cwi.nl/uai2010/papers/UAI2010_0282.pdf
https://arxiv.org/pdf/1006.5051.pdf
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https://arxiv.org/pdf/2207.08667.pdf
http://seppe.net/aa/papers/mergingtrees.pdf
https://arxiv.org/pdf/2205.10927.pdf
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Privacy Has Become Increasingly Critical

https://www.whitehouse.gov/w
p-content/uploads/2023/03/Nati
onal-Strategy-to-Advance-Priv
acy-Preserving-Data-Sharing-a
nd-Analytics.pdf 
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Differential Privacy (DP) and Other Techniques

https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Strategy-to-Advance
-Privacy-Preserving-Data-Sharing-and-Analytics.pdf  
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Differential Privacy (DP) and Other Techniques

https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Strategy-to-Advance
-Privacy-Preserving-Data-Sharing-and-Analytics.pdf  

This is a common misconception 
about differential privacy (DP)
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DP and Levels of Protections

● Strong protection: ε ≤ 1   

● Reasonable projection: ε ≤ 10

● No projection: ε > 10

https://arxiv.org/pdf/2303.00654.pdf 
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Our Prior Works Related to Privacy 
ICLR’23, Improved Convergence of Differential Private SGD with Gradient Clipping

ArXiv’23, Differential Privacy with Random Projections and Sign Random Projections

ArXiv’23, Differentially Private One Permutation Hashing and Bin-wise Consistent Weighted Sampling

ICML’23, Regression with Label Permutation in Generalized Linear Model

ICML’23, One-Step Estimator for Permuted Sparse Recovery

KDD’23, OPORP: One Permutation + One Random Projection

SIGIR’23, Building K-Anonymous User Cohorts with Consecutive Consistent Weighted Sampling (CCWS)

ArXiv’22, k-Median Clustering via Metric Embedding: Towards Better Initialization with Differential Privacy

NeurIPS’22, Breaking the Linear Error Barrier in Differentially Private Graph Distance Release

IEEE CNS’22, NL2GDPR: Automatically Develop GDPR Compliant Android Application from Natural Language

ISIT’22, Distances Release with Differential Privacy in Tree and Grid Graph 240

https://openreview.net/pdf?id=FRLswckPXQ5
https://arxiv.org/pdf/2306.01751.pdf
https://arxiv.org/pdf/2306.07674.pdf
https://proceedings.mlr.press/v202/fang23a/fang23a.pdf
https://proceedings.mlr.press/v202/zhang23t/zhang23t.pdf
https://pltrees.github.io/publication/KDD_2023_OPORP.pdf
https://arxiv.org/pdf/2304.13677.pdf
https://arxiv.org/pdf/2206.12895.pdf
https://arxiv.org/pdf/2204.14247.pdf
https://pltrees.github.io/publication/NL2App2022.pdf
https://arxiv.org/pdf/2204.12488.pdf


DP Algorithms Based on Random Projections

DP-RP: DP algorithm based on random projections (RP) with many variants 

DP-OPORP: A variant of DP-RP Differential Privacy with Random Projections and Sign Random Projections

DP-SignOPORP: DP algorithm based on using signs of OPORP output 

iDP-SignRP: another interesting which only needs extremely small ε, but it is not strict DP

ArXiv 2023, Differential Privacy with Random Projections and Sign Random Projections
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DP Algorithms Based on Permutations

DP-BCWS: DP algorithm for bin-wise consistent weighted sampling  

DP-OPH: DP algorithm for one permutation hashing 

DP-MH: DP algorithm for minwise hashing (minhash)

ArXiv 2023, Differentially Private One Permutation Hashing 
and Bin-wise Consistent Weighted Sampling
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Intuitions behind These New DP Algorithms

Data are often in a vector format, i.e., data vectors in p-dimensions, where p does not have to be small. 

The uses of data vectors are often through some "aggregated" form. For example, in similarity search, we often 
use the "cosine" value (or other similarity measures) between vectors. When training machine learning models, 
we essentially use their dot products, kernels, or more sophisticated aggregations.

We design randomized algorithms to "aggregate" data, and the resultant values can be further quantized. 
Interestingly, even after these drastic data transformations, data similarities are still preserved in some form.

The aggregation and quantization operations can significantly facilitate privacy protection.

The randomizations (e.g., hash functions, permutations, random projections) for aggregation are assumed to 
be known, for achieving stronger privacy protection in the real-world situation. 

A series of novel ideas have paved the way for good DP algorithms (good utility with privacy guarantee).
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DP-RP Family of Algorithms: the Basic Idea

ArXiv 2023, Differential Privacy with Random Projections and Sign Random Projections
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Sign Flipping Probability of RP

ArXiv 2023, Differential Privacy 
with Random Projections and 
Sign Random Projections
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DP-RP and DP-OPORP

ArXiv 2023, Differential Privacy with Random Projections and Sign Random Projections
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DP-RP and DP-OPORP

ArXiv 2023, Differential Privacy with Random Projections and Sign Random Projections

Compared to the adding DP to 
the original data (green curve), 
DP-RP and DP-OPORP 
considerably improve the 
accuracy at the same privacy 
budget (ε). 
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DP-SignOPORP

ArXiv 2023, Differential Privacy with Random Projections and Sign Random Projections
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ArXiv 2023, Differential Privacy with Random Projections and Sign Random Projections

DP-SignOPORP

With quantization and dusing 
smoothed local sensitivity, 
DP-SignOPORP further 
considerably improves the 
accuracy at the same ε. 
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iDP-SignRP

ArXiv 2023, Differential Privacy with Random Projections and Sign Random Projections

If applications accept iDP 
(individual DP), then 
DP-SignRP can achieve 
excellent accuracy  even at 
really small ε.  iDP is a 
relaxed definition of DP.
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DP-BCWS
ArXiv 2023, Differentially Private One Permutation Hashing and Bin-wise Consistent 
Weighted Sampling 

NeurIPS 2019, Re-randomized Densification for One Permutation Hashing and Bin-wise 
Consistent Weighted Sampling
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DP-BCWS
ArXiv 2023, Differentially Private One Permutation Hashing and Bin-wise Consistent 
Weighted Sampling 

NeurIPS 2019, Re-randomized Densification for One Permutation Hashing and Bin-wise 
Consistent Weighted Sampling
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https://www.skillcast.com/blog/20-biggest-gdpr-fines
https://www.zdnet.com/article/gdpr-fines-increased-by-40-last-year-and-theyre-about-to-get-a-lot-bigger/
https://noyb.eu/en/austrian-dpa-has-option-fine-google-eu6-billion

Fines for GDPR Incompliance
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NL2GDPR: Automatically Develop GDPR Compliant 
Android Application Features from Natural Language

CNS 2022

System Architecture

Policy Accuracy
Retention 89.6%
Consent 89.6%
Privacy Policy 87.5%
Access 89.6%
Deletion 87.5%
Sharing 91.7%
Security 91.7% Information Extractor

End-to-end Performance
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AI Model Security
In addition to privacy, the AI model security has become increasingly important: 

● FACT SHEET: Biden- Harris Administration Secures Voluntary Commitments from Leading 
Artificial Intelligence Companies to Manage the Risks Posed by AI, link, 

● The Blueprint for an AI Bill of Rights, link 

Since 2019, we have worked on watermarking, integrity authentication, and backdoor attacks.
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AI Model Security
Since 2019, we have worked on watermarking, integrity authentication, and backdoor attacks.

The list of our prior works on AI model security: 

AAAI 2023, Defending Backdoor Attacks on Vision Transformer via Patch Processing
NeurIPS 2022, Marksman Backdoor: Backdoor Attacks with Arbitrary Target Class
KDD 2022, Integrity Authentication in Tree Models
ICDE 2022, Identification for Deep Neural Network: Simply Adjusting Few Weights!
AAAI 2022, DeepAuth: A DNN Authentication Framework by Model-Unique and Fragile Signature Embedding
NeurIPS 2021, Backdoor Attack with Imperceptible Input and Latent Modification
ICCV 2021, LIRA: Learnable, Imperceptible and Robust Backdoor Attacks
ICCV 2021, Robust Watermarking for Deep Neural Networks via Bi-level Optimization
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https://openaccess.thecvf.com/content/ICCV2021/papers/Yang_Robust_Watermarking_for_Deep_Neural_Networks_via_Bi-Level_Optimization_ICCV_2021_paper.pdf


Backdoor Attack 
influences the 
model prediction 
by modifying the 
model’s behavior 
during the 
training process 
with a backdoor.

Input 
Data

Trained 
Model

Prediction

Training Data

Training the 
Machine Learning 

Algorithm

trigger

Prediction: STOP

This is a paramount security concern in the 
model building supply chain, as the increasing 
complexity of machine learning models has 
promoted training outsourcing and machine 
learning as a service (MLaaS).

Prediction: GO

Clean Yellow Square

Backdoor Attacks on Deep Neural Network (DNN) 
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Limitation: The transformation function is predetermined
● Limits the attack visual stealthiness 
● Results in lower attack success rates

Prior Works: Fixed Trigger/Transformation Function
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LIRA’s learning process is separated in 2 stages. 
● Stage I: both f and T are trained (trigger generation). 
● Stage II: only f is trained while T is fixed (backdoor injection). 

ICCV 2021

LIRA: Learnable, Imperceptible BackdooR Attack 
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200x 
Amplified
Residual

Conclusions:

● LIRA has significantly higher 
success fooling rates.

● LIRA’s stealthiness causes 
increasing confusion between the 
testers.

Human Inspection Tests - Each tester is trained to  
recognize the triggered image. Success Fooling Rate (unable 
to recognize the clean or poisoned images) is reported ICCV 2021
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All-to-OneBenign Model

Activations of the last hidden layer (penultimate) with 2-dimensional  t-SNE projections. There exists a 
clear separation between the poisoned and clean data of a predicted class. Activation Clustering detects 
such separations and removes poisoned data, then re-trains the model. 

All-to-All

We observe such separations in the existing methods, including BadNets [Gu et al 2017],  WaNet 
[Nguyen et al 2021] & LIRA [Doan et al 2022].

Penultimat
e LayerI

O

Input Space is Optimized, How About Latent Space?
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● Solve the constrained optimization problem:

clean data objective triggered data objective

▷ The trigger function can be defined as:

high attack 

performance 

minimize the 

difference in the 

latent space

Wasserstein Backdoor: 
Imperceptible Input And Latent Modification

NeurIPS 2021
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  (a) All-to-one: LIRA           (b) All-to-one: WB         (c) All-to-all: LIRA        (d) All-to-all: WB

MNIST: t-SNE embedding in the latent space.

  (a) All-to-one: LIRA           (b) All-to-one: WB         (c) All-to-all: LIRA        (d) All-to-all: WB

CIFAR10: t-SNE embedding in the latent space.

Learned Latent Space is Inseparable
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NeurIPS 2022

The first work to extend single-payload attack to multi-trigger and multi-payload backdoor 
with the capability of misclassifying an input to any target class. 

Marksman Backdoor: 
Backdoor Attacks with Arbitrary Target Class
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• Protect intellectual property (IP)

• Image, video, …, Deep Neural Network (DNN)

(Source: online)

� Training DNN models can be very expensive

  BERT:   256 TPU-chip days         ~    $6,912

  GPT-3:  355 Tesla-V100 years     ~    $4,600,000

Watermarking
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• Inserts to feature space (Uchida et al. & Rouhani et al.)

• Exploits adversarial example (Le Merrer et al.)

• Utilizes backdoor (Adi et al.)

Adi, Y.; Baum, C.; Cisse, M.; Pinkas, B.; and Keshet, J. 2018. Turning your weakness into a strength: Watermarking deep neural networks by backdooring. In Proceedings of 
27th USENIX Security Symposium (USENIX Security), 1615–1631. 
Uchida, Y.; Nagai, Y.; Sakazawa, S.; and Satoh, S. 2017. Embedding watermarks into deep neural networks. In Proceedings of the 2017 ACM on International Conference 
on Multimedia Retrieval (ICMR), 269–277.
Darvish Rouhani, B.; Chen, H.; and Koushanfar, F. 2019. DeepSigns: an end-to-end watermarking framework for ownership protection of deep neural networks. In 
Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 485–497. 
Le Merrer, E.; Perez, P.; and Tr´edan, G. 2020. Adversarial frontier stitching for remote neural network watermarking. Neural Computing and Applications, 32(13): 
9233–9244.

rely on end-to-end 
retraining key samples

Prior Methods for Watermarking
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● Watermarking by only adjusting a few weights, and extend watermarking to identification
● Adopt the parameter searching concept from fault attacks

ICDE 2022

D
s
: selected key samples

D
u
: unselected key samples

D
n
: natural inputs

Identification for Deep Neural Network: 
Simply Adjusting a Few Weights
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▪ Inner phase: Optimizing the example-level problem to generate robust key samples;
▪ Outer phase: mask adaptive optimization to achieve robustness of the projected DNN models.

ICCV 2021

Bi-level optimization schema
Inner phase flow

Robust Watermarking for Deep Neural Networks 
via Bi-level Optimization

269

https://openaccess.thecvf.com/content/ICCV2021/papers/Yang_Robust_Watermarking_for_Deep_Neural_Networks_via_Bi-Level_Optimization_ICCV_2021_paper.pdf


Watermark is used for IP ownership verification. It should not be easily removed or overwritten.

Transformation Attacks: attempt to remove the watermark while retaining the accuracy of the 
DNN model
● Fine-tuning
● Model-pruning
● Watermark overwriting

Method Accuracy Robustness

[Uchida et al.] ~0.3% 70~96%

[Rouhani et al.] ~0.5% 58%

[Adi et al.] ~0.3% 95%

Proposed ~0.05% 100%

Comparison to prior works on fidelity and 
robustness against overwriting (20 key samples)

Robustness of Watermarking
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Types Fragile Robust

Photo/Media
Disappears when the photo is 

processed, e.g., with 
compression or resizing

Survives a variety of 
transformations, e.g., photo filter, 
conversion to a different format

DNN Any malicious modification will 
destroy the watermark

Robust against a certain degree 
of modification that may include 

fine-tuning, transfer learning, 
pruning, etc.

Application Integrity Verification Ownership Verification

Types of Watermarking
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▪ Machine learning as a service (MLaaS)

▪ The supply chain of models:
• multiple parties and vendors
• data, algorithm, and infrastructure are vulnerable to breach

▪ Maliciously altered models
• poisoning or backdoor attacks
• impair the integrity, reputation, and profit of the model owner

Owner

Users

Cloud

Deploy model

Query model

Integrity Authentication
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Embed a fragile signature without affecting the performance AAAI 2022

DeepAuth: A DNN Authentication Framework by 
Model-Unique and Fragile Signature Embedding
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Boosted Tree Models
▪ Ensemble of decision trees

▪ Typically produce robust and fairly accurate results

▪ Interpretability

▪ Deep learning integrity authentication methods require gradients

• tree models are indifferentiable

▪ Many deep learning signature embedding methods require retraining

• appending more trees increases model size and hurts the inference performance

▪ Replacing a subset of existing trees is still an open research

• a tree is generated on the results of the previous trees

KDD 2022

An example for signature key selection

Challenges

Integrity Authentication in Tree Models
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Distributed, Adaptive, or Federated Learning
ICML’23, Analysis of Error Feedback in Federated Non-Convex Optimization with Biased Compression
JMLR’23, Sharper Analysis for Minibatch Stochastic Proximal Point Method: Stability, Smoothness, and Deviation
UAI’23, Fed-LAMB: Layer-wise and Dimension-wise Locally Adaptive Federated Learning

ICLR’23, Improved Convergence of Differential Private SGD with Gradient Clipping
ICLR’22, On Distributed Adaptive Optimization with Gradient Compression 
NeurIPS’22, On Convergence of FedProx: Local Dissimilarity Invariant Bounds, Non-smoothness and Beyond
BIGDATA’22, Communication-Efficient TeraByte-Scale Model Training Framework for Online Advertising
ACML’22, On the Convergence of Decentralized Adaptive Gradient Methods
ACML’21, An Optimistic Acceleration of AMSGrad for Nonconvex Optimization
FODS’20, Toward Communication Efficient Adaptive Gradient Method
JMLR’20, On Convergence of Distributed Approximate Newton Methods: Globalization, Sharper Bounds and
NeurIPS’20, Towards Better Generalization of Adaptive Gradient Methods
MLSys’20, Distributed Hierarchical GPU Parameter Server for Massive Scale Deep Learning Ads Systems
CIKM’19, AIBox: CTR Prediction Model Training on a Single Node
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https://arxiv.org/pdf/2003.05622.pdf
https://dl.acm.org/doi/pdf/10.1145/3357384.3358045


Improve Generalization of Adaptive Gradient Methods
NeurIPS’20, Towards Better Generalization of Adaptive Gradient Methods

● Stochastic non-convex optimization. The empirical loss function:

● Adaptive gradient methods (e.g, AdaGrad, Adam, AMSGrad) has been proven very 
effective in many deep learning applications
○ Fast convergence, better accuracy (e.g., especially for language models)
○ Self-adapting learning rates, less need to tune

● Can we improve the generalization power of adaptive gradient methods?
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Improve Generalization of Adaptive Gradient Methods
NeurIPS’20, Towards Better Generalization of Adaptive Gradient Methods

Stable Adaptive Gradient Descent (SAGD)

Infinite samples SAGD

● Idea: combining model training with differential privacy (DP)
○ Ideal case: the model takes infinite many training samples
○ Statistically, samples with DP perturbation can be viewed as fresh new 

samples, when being re-used. Therefore, DP can help generalization.
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The SAGD Algorithm
NeurIPS’20, Towards Better Generalization of Adaptive Gradient Methods

SAGD + Laplace DP noise

Gradient approximation guarantee with DP noise
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Theory and Experiments
NeurIPS’20, Towards Better Generalization of Adaptive Gradient Methods

Convergence rate

SAGD performs worse on 
training set, but the best on 
test set (generalizes better)!
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Optimistic Acceleration for AMSGrad
ACML’21, An Optimistic Acceleration of AMSGrad for Nonconvex Optimization

OPT-AMS: use the optimistic prediction of the gradient in the next iterations to 
accelerate the training process
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Optimistic Acceleration for AMSGrad
ACML’21, An Optimistic Acceleration of AMSGrad for Nonconvex Optimization

Gradient prediction:

Solve a linear equation for a 
linear combination of past 
gradients

r = 5 is a good choice
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Evaluation of OPT-AMS
ACML’21, An Optimistic Acceleration of AMSGrad for Nonconvex Optimization

Training loss: OPT-AMS has faster convergence speed
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Evaluation of OPT-AMS
ACML’21, An Optimistic Acceleration of AMSGrad for Nonconvex Optimization

Test accuracy: OPT-AMS achieve better generalization performance

284

https://proceedings.mlr.press/v157/wang21c/wang21c.pdf


Communication Efficient Adaptive Gradient Method
FODS’20, Toward Communication Efficient Adaptive Gradient Method
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Local SGD and Periodic Model Averaging

Local SGD is heavily used for training neural nets in federated learning. 

We consider adaptive gradient methods to improve over local SGD.

FODS’20, Toward Communication Efficient Adaptive Gradient Method
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Naive Local AMSGrad
FODS’20, Toward Communication Efficient Adaptive Gradient Method

Naive local 
AMSGrad fails to 
converge

287

https://arxiv.org/pdf/2109.05109.pdf


Local AMSGrad That Works

The key divergence mechanism is 
due to different adaptive learning 
rates on different nodes. 

We force different nodes to have 
the same adaptive learning rate

FODS’20, Toward Communication Efficient Adaptive Gradient Method
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Local AMSGrad That Works
FODS’20, Toward Communication Efficient Adaptive Gradient Method
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Experiments on Local AMSGrad
FODS’20, Toward Communication Efficient Adaptive Gradient Method
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Decentralized Adaptive Gradient Methods

● Communication cost has become a major concern in (centralized) distributed computing. 

● Decentralized  distributed computing can be highly beneficial in (e.g.,) mobile computing.

● It is difficult to develop decentralized adaptive gradient methods that provebly converge. 

● We propose a general algorithmic framework that can convert existing adaptive gradient 
methods to their decentralized counterparts. We develop the generic decentralized 
framework on prototype methods: AMSGrad and AdaGrad.

ACML’22, On the Convergence of Decentralized Adaptive Gradient Methods
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DADAM Fails to Converge
ACML’22, On the Convergence of Decentralized Adaptive Gradient Methods

Proposed by Nazari et al. (2019), 
the Decentralized ADAM (DADAM) 
is a decentralized version of ADAM. 
It admits a non-standard regret 
bound in the online setting. 
However, we can show the 
convergence failure of DADAM in 
the offline settings. 

292

https://proceedings.mlr.press/v189/chen23b/chen23b.pdf


Unified Decentralized Adaptive Gradient Framework
ACML’22, On the Convergence of Decentralized Adaptive Gradient Methods
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Decentralized AMSGrad and AdaGrad
ACML’22, On the Convergence of Decentralized Adaptive Gradient Methods
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Compressed Distributed Adaptive Optimization 
ICLR’22, On Distributed Adaptive Optimization with Gradient Compression 

In distributed optimization (e.g., DSGD), transmitting the gradients between local nodes and 
server could be costly and slow for large models. Gradient compression has been a popular 
solution to resolve this issue.

Unbiased compressors:
● Stochastic quantization, e.g., QSGD (Alistarh et al., 2017)
● Stochastic sparsification

Biased compressors:
● Random-K, Top-K
● Fixed quantization, e.g., SignSGD
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COMP-AMS Algorithm 
ICLR’22, On Distributed Adaptive Optimization with Gradient Compression 

We focus on gradient compression with adaptive AMSGrad (Reddi et al. 2018)

We consider biased compressors 
with Error Feedback (EF)

In each round, the local node:
1. Compute and send stochastic 

gradient
2. Update local error tracker

The server:
1. Aggregate the local gradients
2. Perform AMSGrad update
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Convergence Rates 
ICLR’22, On Distributed Adaptive Optimization with Gradient Compression 

Convergence rate for non-convex optimization
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Convergence Rates
ICLR’22, On Distributed Adaptive Optimization with Gradient Compression 

Linear speedup in number of nodes n

Single-machine rate matches the full-precision AMSGrad

Error feedback fixes the convergence issue of biased compression for AMSGrad!
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Experiments
ICLR’22, On Distributed Adaptive Optimization with Gradient Compression 

COMP-AMS matches full-precision training with 30 - 100x communication reduction
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Experiments
ICLR’22, On Distributed Adaptive Optimization with Gradient Compression 

Validate the linear speedup property of convergence of COMP-AMS vs. # of local nodes
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Compression for Federated Learning
ICML’23, Analysis of Error Feedback in Federated Non-Convex Optimization with Biased Compression

Federated learning (FL) has been an important topic in ML and has seen many applications 
in 5G/6G wireless communications, Internet of Things (IoT), financial fraud detection, input 
method editor (IME), advertising (ads), health records, …

In this paper, we consider a standard
centralized FL system, with a global
server and many local clients (data silos,
mobile phones, IoT devices).

In each round, the clients train the models
locally, and send back the model updates 
to the server for aggregation.
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Compression for Federated Learning
ICML’23, Analysis of Error Feedback in Federated Non-Convex Optimization with Biased Compression

Three key challenges in FL algorithm design, theory, and deployment:

1. Communication cost: Limited wireless bandwidth often cannot afford 
transmitting full-precision large models.

2. Data heterogeneity: Local clients’ data are non-iid. Thus, the local training 
loss (expectation over local data distribution) are different from the global 
training loss.

3. Partial participation: In cross-device FL, clients may drop and join in each 
round, thus partially participating in FL training.
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Compression for Federated Learning
ICML’23, Analysis of Error Feedback in Federated Non-Convex Optimization with Biased Compression

Error Feedback (Seide et al. 2014; Stich et al. 2018) has not been studied under the 
practical FL setting, thoroughly.

● We focus on the Fed-EF framework and provide the analysis of EF with local steps, 
data heterogeneity, and communication compression, to achieve a sharp 
convergence rate compared with state-of-the-art FL methods.

● We propose Fed-EF-AMS, the first adaptive (Adam-type) FL algorithm with 
communication compression.

● We develop the analysis of EF under partial participation, showing an extra slow 
down factor which is related to the client sampling ratio.

[1] Seide et al., 1-bit stochastic gradient descent and its application to data-parallel 
distributed training of speech DNNs, INTERSPEECH 2014

[2] Stich et al., Sparsified SGD with memory, NeurIPS 2018
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Fed-EF-SGD: The server performs SGD updates

Fed-EF-AMS: The server performs AMSGrad (Reddi 
et al. 2019) updates

For distributed gradient compression with adaptive 
optimizers, see Li et al. 2022.

[1] Reddi et al., On the convergence of Adam and 
Beyond, ICLR 2019

[2] Li et al., On distributed adaptive optimization with 
gradient compression, ICLR 2022

Fed-EF Algorithm
ICML’23, Analysis of Error Feedback in Federated Non-Convex Optimization with Biased Compression
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Contrastive compressor:                                   , n: # of clients   m: # of active clients                                  

● Fed-SGD with biased compression, without EF:
● Fed-EF-SGD and Fed-EF-AMS (full participation):

● Fed-EF under partial client participation (uniform sampling assumption)

An extra slow-down factor         : “delayed error compensation”

Partial participation introduces staleness to the local error accumulator. Updating with the 
stale information slows down convergence.

Convergence Analysis
ICML’23, Analysis of Error Feedback in Federated Non-Convex Optimization with Biased Compression

Matches full-precision rates 
when q=0 (no compression)

The full-precision rate under PP is                         
[Yang et al. ICLR’21]
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Our algorithm and analysis cover local steps, data heterogeneity, partial 
participation and adaptive optimizer.

Convergence Analysis
ICML’23, Analysis of Error Feedback in Federated Non-Convex Optimization with Biased Compression
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Fed-EF matches the performance of full-precision training with substantially 
reduced communication cost (30 - 100x)

p = m/n  is the client participation rate

Experiments
ICML’23, Analysis of Error Feedback in Federated Non-Convex Optimization with Biased Compression
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Linear speedup with n in full participation case

Faster speedup with m in partial participation (validating the extra          factor)

Fed-EF with Topk-0.01 compression

Left: full participation, n = 20, 40, 60, 100

Right: Partial participation, n = 200

          m = 20, 40, 60, 100

Experiments
ICML’23, Analysis of Error Feedback in Federated Non-Convex Optimization with Biased Compression
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Multi-Modal and Cross-Modal Retrieval
Embeddings from cross-modal and multi-modal applications are increasing more common in 
industry (e.g., text-image, text-video). We have accumulated rich experiences with 
multi-modal/cross-modal training and retrieval, especially for search and advertising industry. 

NAACL 2022, Cross-Lingual Cross-Modal Consolidation for Effective Multilingual Video Corpus Moment Retrieval
SIGIR 2022, Cross-Probe BERT for Fast Cross-Modal Search
CIKM 2022, Multi-scale Multi-modal Dictionary BERT For Effective Text-image Retrieval in Multimedia Advertising
CIKM 2022, Texture BERT for Cross-modal Texture Image Retrieval
BIGDATA 2022, Tree-based Text-Vision BERT for Video Search in Baidu Video Advertising
ICTIR 2022, U-BERT for Fast and Scalable Text-Image Retrieval
NAACL 2021, Cross-lingual Cross-modal Pretraining for Multimodal Retrieval
EMNLP 2021, Inflate and Shrink: Enriching and Reducing Interactions for Fast Text-Image Retrieval
SIGIR 2021, Heterogeneous Attention Network for Effective and Efficient Cross-modal Retrieval
CIKM 2021, Assorted Attention Network for Cross-Lingual Language-to-Vision Retrieval
CIKM 2021, Multi-modal Dictionary BERT for Cross-modal Video Search in Baidu Advertising
CIKM 2021, MixBERT for Multi-modal Matching in Image Advertising
KDD 2020, Combo-Attention Network for Baidu Video Advertising 310
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Our Works on Generative AI Models
● Likelihood-Based Generative Radiance Field with Latent Space Energy-Based Model for 3D-Aware Disentangled Image Representation, 

AISTATS 2023. pdf
● CoopInit: Initializing Generative Adversarial Networks via Cooperative Learning, AAAI 2023. pdf
● A Tale of Two Latent Flows: Learning Latent Space Normalizing Flow with Short-run Langevin Flow for Approximate Inference, AAAI 

2023. pdf
● Learning Latent Structural Relations with Message Passing Prior, WACV 2023. pdf
● A Tale of Two Flows: Cooperative Learning of Langevin Flow and Normalizing Flow Toward Energy-Based Model, ICLR 2022. pdf
● Degenerate Swin to Win: Plain Window-based Transformer without Sophisticated Operations, Preprint 2022. pdf
● Flow-based Perturbation for Cause-effect Inference, CIKM 2022. pdf
● Variational Flow Graphical Model, KDD 2022. pdf
● Causal Effect Prediction with Flow-based Inference, ICDM 2022. pdf
● Learning Energy-Based Model with Variational Auto-Encoder as Amortized Sampler, AAAI 2021. pdf
● Patchwise Generative ConvNet: Training Energy-Based Models from a Single Natural Image for Internal Learning, CVPR 2021. pdf
● Learning Deep Latent Variable Models by Short-Run MCMC Inference with Optimal Transport Correction, CVPR 2021. pdf
● Learning Energy-Based Generative Models via Coarse-to-Fine Expanding and Sampling, ICLR 2021. pdf
● Learning Generative Vision Transformer with Energy-Based Latent Space for Saliency Prediction, NeurIPS 2021. pdf
● Causal Discovery with Flow-based Conditional Density Estimation, ICDM 2021. pdf
● Estimate the Implicit Likelihoods of GANs with Application to Anomaly Detection, WWW 2020. pdf
● Meta-CoTGAN: A Meta Cooperative Training Paradigm for Improving Adversarial Text Generation, AAAI 2020. pdf
● Multi-Agent Discussion Mechanism for Natural Language Generation, AAAI 2019. pdf
● Graph to Graph: a Topology Aware Approach for Graph Structures Learning and Generation, AISTATS 2019. pdf
● On Random Deep Weight-Tied Autoencoders: Exact Asymptotic Analysis, Phase Transitions, and Implications to Training, ICLR 2019. 

pdf
311

https://arxiv.org/pdf/2304.07918.pdf
https://arxiv.org/pdf/2303.11649.pdf
https://arxiv.org/pdf/2301.09300.pdf
https://openaccess.thecvf.com/content/WACV2023/papers/Ren_Learning_Latent_Structural_Relations_With_Message_Passing_Prior_WACV_2023_paper.pdf
https://openreview.net/pdf?id=31d5RLCUuXC
https://arxiv.org/pdf/2211.14255.pdf
https://dl.acm.org/doi/10.1145/3511808.3557326
https://dl.acm.org/doi/10.1145/3534678.3539450
https://dl.acm.org/doi/10.1145/3534678.3539450
https://ojs.aaai.org/index.php/AAAI/article/view/17250/17057
https://openaccess.thecvf.com/content/CVPR2021/papers/Zheng_Patchwise_Generative_ConvNet_Training_Energy-Based_Models_From_a_Single_Natural_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/An_Learning_Deep_Latent_Variable_Models_by_Short-Run_MCMC_Inference_With_CVPR_2021_paper.pdf
https://openreview.net/pdf?id=aD1_5zowqV
https://proceedings.neurips.cc/paper/2021/file/8289889263db4a40463e3f358bb7c7a1-Paper.pdf
https://ieeexplore.ieee.org/document/9679019
https://ieeexplore.ieee.org/document/9679019
https://ojs.aaai.org/index.php/AAAI/article/view/6490/6346
https://ojs.aaai.org/index.php/AAAI/article/view/4566/4444
http://proceedings.mlr.press/v89/sun19c/sun19c.pdf
https://openreview.net/pdf?id=HJx54i05tX


Our Works on NLP

● A Semi-Autoregressive Graph Generative Model for Dependency Graph Parsing, ACL 2023 (Findings). pdf
● Denoising Enhanced Distantly Supervised Ultrafine Entity Typing, ACL 2023 (Findings). pdf
● Learning to Selectively Learn for Weakly Supervised Paraphrase Generation with Model-based Reinforcement Learning, NAACL 2022. 

pdf
● PromptGen: Automatically Generate Prompts using Generative Models, NAACL 2022 (Findings). pdf
● Cross-Lingual Cross-Modal Consolidation for Effective Multilingual Video Corpus Moment Retrieval, NAACL 2022 (Findings). pdf
● Cross-Probe BERT for Fast Cross-Modal Search, SIGIR 2022. pdf
● Continual Learning for Natural Language Generations with Transformer Calibration, CoNLL 2022. pdf
● Texture BERT for Cross-modal Texture Image Retrieval, CIKM 2022. pdf
● U-BERT for Fast and Scalable Text-Image Retrieval, ICTIR 2022. pdf
● Cross-lingual Language Model Pretraining for Retrieval, WWW 2021. pdf
● Cross-lingual Cross-modal Pretraining for Multimodal Retrieval, NAACL 2021. pdf
● Cross-Lingual Unsupervised Sentiment Classification with Multi-View Transfer Learning, ACL 2020. pdf
● Inflate and Shrink: Enriching and Reducing Interactions for Fast Text-Image Retrieval, EMNLP 2021. pdf
● A Deep Decomposable Model for Disentangling Syntax and Semantics in Sentence Representation, EMNLP 2021 (Findings). pdf
● Hierarchical Multi-Task Word Embedding Learning for Synonym Prediction, KDD 2019. pdf
● Coreference Aware Representation Learning for Neural Named Entity Recognition, IJCAI 2019. pdf
● End-to-end Deep Reinforcement Learning Based Coreference Resolution, ACL 2019. pdf
● Reinforced Product Metadata Selection for Helpfulness Assessment of Customer Reviews, EMNLP 2019. pdf
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Our Works on Ads, Search, Recommendation
● Media report: A Look at Baidu’s Industrial-Scale GPU Training Architecture. link
● EGM: Enhanced Graph-based Model for Large-scale Video Advertisement Search, KDD 2022. pdf
● Multi-scale Multi-modal Dictionary BERT For Effective Text-image Retrieval in Multimedia Advertising, CIKM 2022. pdf
● Communication-Efficient TeraByte-Scale Model Training Framework for Online Advertising, BIGDATA 2022. pdf
● Boost CTR Prediction for New Advertisements via Modeling Visual Content, BIGDATA 2022. pdf
● FeatureBox: Feature Engineering on GPUs for Massive-Scale Ads Systems, BIGDATA 2022. pdf
● Decomposing User-APP Graph into Subgraphs for Effective APP and User Embedding Learning. pdf
● Tree-based Text-Vision BERT for Video Search in Baidu Video Advertising. pdf
● Agile and Accurate CTR Prediction Model Training for Massive-Scale Online Advertising Systems, SIGMOD 2021. pdf
● GemNN: Gating-Enhanced Multi-Task Neural Networks with Feature Interaction Learning for CTR Prediction, SIGIR 2021. pdf
● Heterogeneous Attention Network for Effective and Efficient Cross-modal Retrieval, SIGIR 2021. pdf
● TIRA in Baidu Image Advertising, ICDE 2021. pdf
● Efficient Learning to Learn a Robust CTR Model for Web-scale Online Sponsored Search Advertising, CIKM 2021. pdf
● Multi-modal Dictionary BERT for Cross-modal Video Search in Baidu Advertising, CIKM 2021. pdf
● MixBERT for Multi-modal Matching in Image Advertising, CIKM 2021. pdf
● Assorted Attention Network for Cross-Lingual Language-to-Vision Retrieval, CIKM 2021. pdf
● Combo-Attention Network for Baidu Video Advertising, KDD 2020. pdf
● Video Recommendation with Multi-gate Mixture of Experts Soft Actor Critic, SIGIR 2020. pdf
● Distributed Hierarchical GPU Parameter Server for Massive Scale Deep Learning Ads Systems, MLSys 2020. pdf
● Sample Optimization For Display Advertising, CIKM 2020. pdf
● AIBox: CTR Prediction Model Training on a Single Node, CIKM 2019. pdf
● MOBIUS: Towards the Next Generation of Query-Ad Matching in Baidu’s Sponsored Search, KDD 2019. pdf 313
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Example projects in collaboration with ads teams

KDD 2022 SIGMOD 2021

SIGIR 2021 SIGIR 2021

CIKM 2021 CIKM 2021

“Phoenix Nest” is the legacy name of Baidu (search) Ads 
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Example projects in collaboration with ads teams

CIKM 2021

ICDE 2021

CIKM 2021

BIGDATA 2021

KDD 2020

SIGIR 2020

CIKM 2020
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Examples of non-ads product projects

WWW 2020
International Langue Input Method Editor

CIKM 2018, Chinese Language Input Method Editor

Deployed boosted tree models on cell phones
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Can LLM Fully Replace Knowledge Graph (KG)?

Possibly! 

At least at this point, knowledge graphs (KGs) are still very useful in industrial practice. 

KGs can also be the extremely useful tools for improving LLMs. That is, in addition to 
retrieval-augmented generation, we can also resort to KG-augmented generation. 

Knowledge graph embedding (KGE) is a major source of embedding data.
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Our Works on Knowledge Graphs

ACL 2023, Denoising Enhanced Distantly Supervised Ultrafine Entity Typing
ACL 2022, OIE@OIA: an Adaptable and Efficient Open Information Extraction Framework
SIGIR 2022, End-to-end Distantly Supervised Information Extraction with Retrieval Augmentation
HT 2022, Knowledge Graph Embedding by Relational Linear Transformation in the Entity Space
SDM 2022, Explainable Concept Graph Completion by Bridging Open-Domain Relations and Concepts
WWW 2021, MQuadE: a Unified Model for Knowledge Fact Embedding
SIGIR 2021, ReadsRE: Retrieval-Augmented Distantly Supervised Relation Extraction
WWW 2020, Extracting Knowledge from Web Text with Monte Carlo Tree Search
EMNLP 2020, A Predicate-Function-Argument Annotation of Natural Language for Open-Domain Information eXpression
ACL 2020, Learning Interpretable Relationships between Entities, Relations and Concepts via Bayesian Structure 
Learning on Open Domain Facts
SDM 2020, An Advantage Actor-Critic Algorithm with Confidence Exploration forOpen Information Extraction
NAACL 2019, Integration of Knowledge Graph Embedding into Topic Modeling with Hierarchical Dirichlet Process
WSDM 2019, Knowledge Graph Embedding Based Question Answering
EMNLP 2018, Logician and Orator: Learning from the Duality between Language and Knowledge in Open Domain
WSDM 2018, Logician: A Unified End-to-End Neural Approach for Open-Domain Information Extraction
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Knowledge Graph Embedding (KGE) Based QA

WSDM 2019, Knowledge Graph Embedding Based Question Answering
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WSDM 2019, Knowledge Graph Embedding Based Question Answering

Knowledge Graph Embedding (KGE) Based QA
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WSDM 2019, Knowledge Graph Embedding Based Question Answering

Knowledge Graph Embedding (KGE) Based QA
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■ Knowledge graphs organize general human world knowledge in a graph structure. 

The nodes in the knowledge graphs represent the entities, and the edges 

represent the relations between them.

■ Knowledge graphs can provide background knowledge to enhance the application 

of machine learning methods in many areas, including search engines, natural 

language processing, recommendation systems, 

question answering, and so on. 

■ Knowledge graphs generally are far from complete.

■ One way to populate the knowledge graphs is 

     to predict the missing facts by reasoning 

     with the existing facts.

Knowledge Graph Embedding (KGE)
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Knowledge Graph Embedding (KGE)
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■ KGE have been developed in recent years for link prediction and triple classification tasks.

■ KGE has gained popularity owing to their simplicity, effectiveness, and scalability.

■ In general, they embed entities and relations into low-dimensional continuous 

representations and model the plausibility of a fact triple (ℎ, 𝑟, 𝑡) through a score function 𝑓 (ℎ, 

𝑟, 𝑡).
■ To honestly reflect the logic of the knowledge base, the embedding methods should be able 

to model the various relation properties. For example,

symmetry – spouse;

inversion – hypernym, hyponym;

composition – mother’s husband is father;

non-injective – one’s children.

Knowledge Graph Embedding (KGE)
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Our solution: embed entity and relation by a symmetric matrix and a pair of matrices, resp.

Key: Singular matrices are used to model the non-injective relation. WWW 2021

MQuadE: Unified Model for Knowledge Fact Embedding
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MQuadE: Unified Model for Knowledge Fact Embedding

WWW 2021, MQuadE: a Unified Model for Knowledge Fact Embedding
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● Knowledge Graphs are isolated small islands which can not talk to each other;

● But human brain contains a large general knowledge graph which is used for each aspect 

of life and can increase for new problem domain.

● How can this happen? 

● We can do this if we can express knowledge in various domains using natural language.

Knowledge Graph
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● People generally regard OIE as methods to extract <s, p, o> tuples from natural text;

● However, we believe OIE is essentially about how to expressing knowledge using natural 

language phrases: 

○ Theoretically, what kind of information in language can be formulated as knowledge;

○ Practically, how to express the complex language phenomenon  into form of language;

Open Information Extraction (OIE)
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● We proposed the SAOKE (Symbol Aided Open Knowledge Expression):

○ Formulate four types of knowledge in natural language: relations, attribute, description, concepts;

○ Express these knowledge with an auxiliary symbol system for accuracy and completeness;

● The first End-to-End Neural Pipeline for OIE (WSDM 2018);

● However, SAOKE can only express part of knowledge in natural sentences.  

Logician: Our First Attempt on OIEWSDM 2018
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Duality between Language and Knowledge

● We proposed the task of Open-Domain Information 

Narration (OIN) as the reverse task of Open Information 

Extraction (OIE);

○ OIE : Sentence 🡪 Knowledge, by Logician;

○ OIN: Knowledge 🡪 Sentence, by Orator;

● The first work to investigate the duality between language 

and knowledge in open domain (EMNLP 2018)
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Open Information Annotation (OIA)
● OIA: Open Information Annotation (EMNLP 2020) : 

○ Formulate a whole sentence into a 

Predicate-Function-Argument structure;

○ All information in sentence can be expressed as 

knowledge in the form of  Predicates and Functions;

● OIA is yet another annotation on natural language, but:

○ Is not build for linguistics but for knowledge in AI;  

○ Directly support downstream tasks, such as OIE;

○ A language annotation for AI.
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● The OIA Parser: Sentence 🡪 OIA Graph 

● OIE@OIA: OIA as a general intermediate layer for multiple OIE systems;

Building the OIA System
ACL 2022, OIE@OIA: an Adaptable and Efficient Open Information Extraction Framework
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● Traditional symbolic KG organize knowledge 

by schema, a system that defines the 

connection between concepts and relations; 

● However, in open domain, the concepts and 

relations are not connected. 

● We build connection between concepts and 

relations in open domain through Bayesian 

Network Structure Learning (ACL 2020) and 

Neural Nets (SDM 2022).

Next Step: How to Organize the Knowledge

SDM 2022

ACL 2020
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Next Step: How to Organize the Knowledge
ACL 2020, Learning Interpretable Relationships between Entities, Relations and Concepts via 
Bayesian Structure Learning on Open Domain Facts
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Next Step: How to Organize the Knowledge
SDM 2022, Explainable Concept Graph Completion by Bridging Open-Domain Relations and Concepts
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Summary
● Many data types in machine learning and AI can be viewed as “vectors”. 

● Vectorized data computing (VDC) is crucial for machine learning and is also much 
beyond machine learning. It may grow into its own discipline in the near future.

● Vector databases can be viewed as one component in vectorized data computing.

● In most applications, results from vector databases (such as similarity search) are 
quite crude and can serve as the initial screening step (e.g., ads candidate 
retrieval). AI and machine learning models are necessary for accurate predictions. 

● Keys in big models: 1) accuracy 2) training/serving efficiency 3) distributed training. 
For example, training trillion-parameter models for high-accuracy recommender 
systems.. Many novel algorithms and infrastructure systems are presented.

● Privacy and AI model security have become increasingly critical in AI. 
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Updated Version Available

https://pltrees.github.io/publication/VecDataComp.pdf
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